Plasma Surface Interactions 2

Predicting the Performance and Impact of Dynamic PFC Surfaces

Project Summary

The objective of this project is to develop, and integrate, high-performance simulation tools capable of predicting plasma facing component (PFC) operating lifetime and the impact of the evolving surface morphology and composition of tungsten-based PFCs on plasma contamination, including the dynamic recycling of fuel species and tritium retention, in future magnetic fusion devices. This project will enable discovery of phenomena controlling critical PFC performance issues, and quantitatively predict their impact on both steady-state and transient plasma conditions. The outcome of this project will be a suite of coupled plasma and materials modeling tools, and a leadership class PFC simulator to predict PFC evolution and feedback to the boundary plasma. Success in the proposed research tasks will enable the prediction of both plasma fueling and the sources of impurity contamination that impact core plasma performance, and will lay the foundation for understanding, designing and developing the materials required to meet the performance objectives of future fusion reactors.

This project builds upon our SciDAC-3 project: Plasma Surface Interactions: Bridging from the Surface to the Micron Frontier through Leadership Computing

Publications and Presentations

Team

<table>
<thead>
<tr>
<th>Institution</th>
<th>Principal Investigator</th>
<th>Additional Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National Laboratory</td>
<td>Richard Mills (rtmills@anl.gov)</td>
<td>Shashi Aithal</td>
</tr>
<tr>
<td>GA/DIII-D</td>
<td>Jerome Guterl</td>
<td>Rui Ding, Orso Meneghini</td>
</tr>
<tr>
<td>LANL</td>
<td>Blas Uberaga (blas@lanl.gov)</td>
<td>Zach Bergstrom, Sham Bhat, Peter Hatton, Enrique Martinez, Nithin Mathew, Danny Perez</td>
</tr>
<tr>
<td>Lawrence Livermore National Laboratory</td>
<td>Ilon Joseph (joseph5@llnl.gov)</td>
<td>Mikhail Dorf, Milo Dorr, Debojyoti Ghosh, Maxim Umansky</td>
</tr>
<tr>
<td>ORNL</td>
<td>Brian D. Wirth* (bdwirth@utk.edu)</td>
<td>David E. Bernholdt, John Canik, Philip Fackler, David L. Green, Cory Hauck, Harry Hughes, James Kress, Jeremy Lore, David Pugmire, Philip C. Roth, Pablo Seleson, Phil Snyder, Tim Younkin</td>
</tr>
<tr>
<td>Pacific Northwest National Laboratory</td>
<td>Wahyu Setyawan (wahyu.setyawan@pnnl.gov)</td>
<td>Rick Kurtz, Giridhar Nandipati, Kenny Roche</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute</td>
<td>Mark Shephard (shephard@rpi.edu)</td>
<td>Dhyaniyoti Nath, Onkar Sahni, Cameron Smith, Vignesh Vittal Srinivasaragavan</td>
</tr>
<tr>
<td>SNL</td>
<td>Habib Najm (hnnajm@sandia.gov)</td>
<td>Tiernan Casey, Mary Alice Cusentino, Khachik Sargsyan, Pieterjan Robbe, Aidan Thompson, Mitch Wood</td>
</tr>
<tr>
<td>UCLA</td>
<td>Jaime Marian</td>
<td>Qianran Yu</td>
</tr>
</tbody>
</table>
Sponsor

This project is part of the Scientific Discovery through Advanced Computing (SciDAC) program, and is jointly sponsored by the Fusion Energy Sciences (FES) and Advanced Scientific Computing Research (ASCR) programs within the U.S. Department of Energy Office of Science. The period of performance is 2017-09-01/2022-08-31.

Key Partners

<table>
<thead>
<tr>
<th>Program</th>
<th>Project</th>
<th>Joint Participants (Primary Liaison)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SciDAC Fusion Projects</td>
<td>AToM - Advanced Tokamak Modeling Environment</td>
<td>David E. Bernholdt (ORNL), Mikhail Dorf (LLNL), Milo Dorr (LLNL), David L. Green (ORNL), Phil Snyder (GA), Maxim Umansky (LLNL)</td>
</tr>
<tr>
<td></td>
<td>Center for Integrated Simulation of Fusion Relevant RF Actuators</td>
<td>Davide Curreli (UIUC), David L. Green (ORNL), Ilon Joseph (LLNL), Maxim Umansky (LLNL)</td>
</tr>
<tr>
<td></td>
<td>Partnership Center for High-fidelity Boundary Plasma Simulations (HBPS)</td>
<td>Davide Curreli (UIUC), Mark Shephard (RPI)</td>
</tr>
<tr>
<td>FES Theory and ASCR Math Programs</td>
<td>Edge Simulation Laboratory (ESL)</td>
<td>Mikhail Dorf (LLNL), Milo Dorr (LLNL), Sergei Krasheninnikov (UCSD), Phil Snyder (GA)</td>
</tr>
<tr>
<td>SciDAC Nuclear Energy Projects</td>
<td>Advancing Understanding of Fission Gas Behavior in Nuclear Fuel through Leadership Class Computing</td>
<td>David E. Bernholdt (ORNL), Sophie Blondel (UTK), James Kress (ORNL), Rick Kurtz (PNL), David Pugmire (ORNL), Kenny Roche (PNL), Philip C. Roth (ORNL), Barry Smith (ANL), Blas Uberaga (LANL), Brian Wirth (UT/ORNL)</td>
</tr>
<tr>
<td></td>
<td>Simulation of Fission Gas in Uranium Oxide Nuclear Fuel</td>
<td>David E. Bernholdt (ORNL), Sophie Blondel (UTK), James Kress (ORNL), Habib Najm (SNL), David Pugmire (ORNL), Philip C. Roth (ORNL), Barry Smith (ANL), Blas Uberaga (LANL), Brian Wirth (UT/ORNL)</td>
</tr>
<tr>
<td>SciDAC Institutes</td>
<td>FASTMath – Frameworks, Algorithms, and Scalable Technologies for Mathematics</td>
<td>Sham Bhat (LANL), Habib Najm (SNL), Khachik Sargsyan (SNL), Onkar Sahni (RPI), Mark Shephard (RPI), Barry Smith (ANL)</td>
</tr>
<tr>
<td></td>
<td>RAPIDS - Resource and Application Productivity through computing, Information, and Data Science</td>
<td>David Bernholdt (ORNL), James Kress (ORNL), David Pugmire (ORNL), Phil Roth (ORNL)</td>
</tr>
</tbody>
</table>

* Lead Institution and Lead Principal Investigator

New to the project?

See [Getting Access to this Wiki](#)