

Discrete Solvers at the Exascale

Esmond G. Ng Lawrence Berkeley National Laboratory

SIAM AN14

What are discrete solvers?

- Nonlinear equations solvers
- ☐ Linear equations solvers
- ☐ Eigen solvers
- ☐ Time integrators
- ☐ Focus on linear equations solvers

What are the exascale challenges?

- ☐ High degree of parallelism
- ☐ Algorithmic scalability on heterogeneous systems
- Deep memory hierarchy data movement or communication
- ☐ Limited memory size per code
- ☐ Resilience
- ☐ The DOE report on Applied Mathematics Research for Exascale Computing identified a number of applied math research areas that aim at tackling these challenges for discrete solvers
 - We will provide some examples to illustrate why and how those areas might be appropriate at exascale

Multiple-precision algorithms

- ☐ Facts ...
 - Lower precision ops are often faster than higher precision ops
 - Lower precisions require less memory ==> require less data movement
- ☐ Use of multiple precisions is not new ...
 - E.g., Kurzak & Dongarra (Concurrency and Computation: Practice & Experience, 2007)
 - Gaussian elimination in single precision and iterative refinements in double precision
 - But may become more important in exascale for data movement and limited memory reasons
- ☐ Open questions ...
 - Determining when lower/higher precisions should be used in different parts of other types of matrix algorithms
 - Reliability, robustness, accuracy of multi-precision algorithms?

Data compression

- Matrix computation is data intensive ==> require lot of data movement/communication
- Example ...
 - One of the recent active research areas has focused on using some form of data compression to improve the performance of certain classes of matrix solvers
 - For matrices arising from the solution of PDEs with smooth kernels,
 off-diagonal blocks in the LU factorization often have low rank
 - Gu, Li, Xia, ...
 - Weisbecker, ...

Data compression in sparse matrix factorization

- ☐ General idea ...
 - Apply SVD to a rank-deficient off-diagonal block
 => obtain a compact representation
 - Can apply the idea recursively and result in a hierarchical structure

- ☐ Advantages ...
 - Lower storage requirements but essentially maintaining same accuracy
 - Result in less communication because the compact representation has to move less data
 - Also often require fewer operations overall (even though additional work is required to compute the compression)

Data compression in sparse matrix factorization

- □ Test problem (Li): 3D seismic imaging Helmholtz equations up to 600³ cubic grids (216M equations)
 - 16,000+ cores: 2x faster, uses 1/5 of memory vs a sparse direct solver based on Gaussian elimination
- Open questions ...
 - Generalizations to other classes of matrices?
 - For other matrices, can use the approach to compute approximations, which can then be used as preconditioners
 - Data compression in other matrix algorithms?
 - Complexity analysis Trade off between compression cost and possible reduction in memory?
 - Robustness, reliability, accuracy?

Randomization and Sampling

- Randomized algorithms have gained quite a bit of popularity in recent years.
 - Not entirely because of exascale computing
 - But some interesting ideas here
- Example ...
 - Consider an m x n matrix A, where m and n are very large.
 - Suppose we want to get a low-rank approximation of A.
 - Best rank-k approximation can be obtained using SVD
 - But require access to the entire matrix A

Randomized algorithms

- ☐ Friedland, Mehrmann, Miedlar, Nkengla (2011) ...
 - Choose p and t_{max}
 - Repeat t_{max} times
 - Generate index sets I and J of size p at random
 - Determine numerical rank r_{IJ} of A(I,J)
 - Compute π_{IJ} = product of the first r_{IJ} singular values of A(I,J)
 - Consider those A(I,J) for which r_{IJ} are the largest and pick the one such that π_{IJ} is the largest. Compute the best rank-k approximation of this particular A(I,J) ... denote by A_{IJk}
 - Let C = A(:,J) and R = A(I,:)
 - Let B be the pseudo-inverse of A_{IJk}
 - Use CBR as a rank-k approximation of A

Randomized algorithms

- ☐ Does it really work?
 - Apparently work on matrices from image processing
 - Can be extended to tensors
- ☐ Advantages ...
 - Do not need entire A; just need to be able to sample A
 - Completely parallel
 - Can start different sequences of samples in parallel
 - Can try different t_{max}
- ☐ Open questions ...
 - Other matrix problems? Other scientific problems?
 - Other randomization/sampling techniques?
 - Robustness, reliability, accuracy?
 - What if the approach fails?

Communication reduction

- Communication is becoming more and more expensive relative to computation
 - Either moving data within the local memory system or across the network in a distributed memory setting
- ☐ Important to design algorithms to reduce the amount of communication as much as possible
- ☐ Example ...
 - QR factorization of a tall, skinny matrix

Communication reduction in QR factorization

- ☐ Demmel, Grigori, Hoemmen, Langou (2008)
 - Consider computing the QR factorization of an m x n dense matrix A, where m >> n
 - TSQR (Tall Skinny QR):
 - Orthogonal reductions based on a binary tree
 - Partition rows of A into blocks and compute QR factorization of each block
 - Reduce the triangular factors in a pairwise fashion
 - Then continue the reduction repeatedly until only one triangular factor is left

Communication reduction in QR factorization

Communication reduction in QR factorization

- ☐ Complexity ...
 - P processors,
 1D mapping,
 counting along
 critical path

	TSQR	ScaLAPACK
# messages	log(P)	2n log(P)
# words	$\frac{1}{2}[n^2 \log(P)]$	$\frac{1}{2}[n^2 \log(P)]$
# flops	$(1/P)[2mn^2] + \frac{1}{3}[n^3 \log(P)]$	$(1/P)[2mn^2] + \frac{1}{2}[n^2 \log(P)]$

• m = 100,000,

$$\left\lceil n / \sqrt{P} \right\rceil = 50$$
,
time in seconds

P	TSQR	ScaLAPACK
1	9.68	12.63
2	15.71	19.88
4	16.07	19.59
8	11.41	17.85
16	9.75	17.29
32	8.15	16.95
64	9.46	17.74

Synchronization reduction

- ☐ Synchronizations can be become bottlenecks
 - Known for a long time
 - But may become worse under exascale
- ☐ Example ...
 - The conjugate gradient algorithm
 - An iterative method for solving sparse system of linear equations
 - Rely on matrix-vector multiplication and inner products

$$\gamma_{k} = \langle r_{k}, r_{k} \rangle
\beta_{k} = \gamma_{k} / \gamma_{k-1}
\rho_{k} = r_{k} + \beta_{k} \rho_{k-1}
v_{k} = A \rho_{k}
\sigma_{k} = \langle \rho_{k}, v_{k} \rangle
\alpha_{k} = \gamma_{k} / \sigma_{k}
x_{k+1} = x_{k} + \alpha_{k} \rho_{k}
r_{k+1} = r_{k} - \alpha_{k} v_{k}$$

one step of the conjugate gradient algorithm

One step of the conjugate gradient algorithm

$$\gamma_k = \langle r_k, r_k \rangle$$

$$\beta_{k} = \gamma_{k} / \gamma_{k-1}$$

$$p_{k} = r_{k} + \beta_{k} p_{k-1}$$

$$\mathbf{v}_{k} = A \mathbf{p}_{k}$$
 $\mathbf{\sigma}_{k} = \langle \mathbf{p}_{k}, \mathbf{v}_{k} \rangle$

$$\alpha_k = \gamma_k / \sigma_k$$

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \alpha_k \mathbf{p}_k$$

$$r_{k+1} = r_k - \alpha_k V_k$$

$$s_{k} = A r_{k}$$

$$\gamma_{k} = \langle r_{k}, r_{k} \rangle$$

$$\delta_{k} = \langle r_{k}, s_{k} \rangle$$

$$\beta_k = \gamma_k / \gamma_{k-1}$$

$$p_{k} = r_{k} + \beta_{k} p_{k-1}$$

$$\mathbf{v}_{k} = \mathbf{s}_{k} + \beta_{k} \mathbf{v}_{k-1}$$

$$\sigma_{k} = \delta_{k} - \beta_{k}^{2} \sigma_{k-1}$$

$$\alpha_k = \gamma_k / \sigma_k$$

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \alpha_k \mathbf{p}_k$$

$$r_{k+1} = r_k - \alpha_k V_k$$

- Also not new ...
 - D'Azevedo, Eijkhout, Romine (1993)
 - The two are mathematically equivalent
 - Based on identities in conjugate gradient
 - There are other variants, but not all have the same numerical behavior

Comm/Sync avoiding/reducing algorithms

- □ Notes ...
 - Some of the ideas in some of these algorithms are not entirely new, but being re-discovered
 - It's often the case that such algorithms may require more memory and/or more computation
 - Some algorithms have communication/synchronization complexities that match lower bounds (Demmel's group)
 - In some cases, the algorithms may not be as stable as conventional algorithms
- ☐ Open questions ...
 - New algorithms that require less communication/synchronization?
 - Can an existing algorithm be reformulated to reduce communication/ synchronization?
 - Numerical behavior of such algorithms?

Fine-grained parallel algorithms

- ☐ Exascale computing promises high degree of parallelism
- ☐ Fine-grained parallel algorithms for matrix problems?
- ☐ Probably need to come up with out-of-the-box ideas
- ☐ Example ...
 - Compute an incomplete LU factorization
 - Traditional approaches incomplete version of Gaussian elimination
 - Chow (2014)
 - All nonzero entries of L and U are computed in parallel and asynchronously
 - Let S be the desired sparsity pattern of L+U

Fine-grained ILU

- \square Compute L_{ij} , i > j, $(i, j) \in S$, U_{ij} , $i \le j$, $(i, j) \in S$
 - subject to $\sum_{k=1}^{\min(i,j)} L_{ik}U_{kj} = A_{ij}, (i,j) \in S$
- $\Box \text{ This results in } L_{ij} = \frac{1}{U_{jj}} \left(A_{jj} \sum_{k=1}^{j-1} L_{ik} U_{kj} \right), \quad i > j$

$$U_{ij} = A_{ij} - \sum_{k=1}^{i-1} L_{ik}U_{kj}, \quad i \leq j$$

which is just a nonlinear equation of the form x = G(x)

- Starting with an initial guess of L and U, one can iterate until convergence
- In the extreme case, each L_{ij}/U_{ij} can be assigned to one processing unit and computed asynchronously, leading to a very fine-grained parallel algorithm

Fine-grained parallel algorithms

- ☐ Results ...
 - See Hittinger's talk
- ☐ Advantages ...
 - Since L, U are incomplete factors, really no need to compute them accurately ==> just a few iteration may be enough
 - Possibility of exploiting a lot of cores
- Open questions ...
 - Similar fine-grained algorithms for other matrix problems?
 - Techniques for solving the nonlinear equations?
 - Converge to the desired solution?

Resilience

- Resilience is concerned with dealing with and recovering from faults
- ☐ Example ...
 - Suppose we are solving a linear system

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

- Suppose there is a fault and x₁ needs to be recovered
- Assume that x₂ is known and the value is trustworthy
- How can x₁ be recovered?

Resilient linear solvers

- ☐ Langou, Chen, Bosilca, Dongarra (2007)
 - Linear interpolation: Solve $A_{11} x_1 = b_1 A_{12} x_2$
 - A-norm of forward error associated with iterates computed by restarted CG or PCG is monotonically decreasing
- ☐ Giraud et al (2014)
 - Least squares interpolation

$$\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} \mathbf{x}_1 = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - \begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix} \mathbf{x}_2$$

- Solve for x_1 as a least squares problem
- Monotonic decrease of residual norm of minimal residual Krylov subspace methods after restart

Resilient linear solvers

- ☐ Techniques can be extended to multiple faults
- Similar ideas can be applied to eigenvalue problems
- Open problems ...
 - Resilient algorithms for other matrix problems?
 - Numerical behavior of such algorithms?
 - What to do if recovery fails?

Summary

- ☐ Challenges along the path to exascale ...
 - High degree of parallelism
 - High communication & synchronization overhead
 - Deep memory hierarchy
 - Limited memory
 - Resilience
- ☐ What we need to overcome these challenges ...
 - Some existing approach may evolve
 - Re-visit old ideas
 - Need new and out-of-the-box ideas

Summary

- ☐ Research opportunities ...
 - Fine-grained parallel algorithms
 - Communication and synchronization avoiding/reduction algorithms
 - Algorithms based on randomization and sampling
 - Multiple-precision algorithms
 - Use of data compression
 - Resilient algorithms
- One of the common themes ...
 - Robustness, reliability, accuracy

