

#### Discrete Solvers at the Exascale

Esmond G. Ng Lawrence Berkeley National Laboratory

SIAM AN14





#### What are discrete solvers?

- Nonlinear equations solvers
- ☐ Linear equations solvers
- ☐ Eigen solvers
- ☐ Time integrators
- ☐ Focus on linear equations solvers



# What are the exascale challenges?

- ☐ High degree of parallelism
- ☐ Algorithmic scalability on heterogeneous systems
- Deep memory hierarchy data movement or communication
- ☐ Limited memory size per code
- ☐ Resilience
- ☐ The DOE report on Applied Mathematics Research for Exascale Computing identified a number of applied math research areas that aim at tackling these challenges for discrete solvers
  - We will provide some examples to illustrate why and how those areas might be appropriate at exascale



### Multiple-precision algorithms

- ☐ Facts ...
  - Lower precision ops are often faster than higher precision ops
  - Lower precisions require less memory ==> require less data movement
- ☐ Use of multiple precisions is not new ...
  - E.g., Kurzak & Dongarra (Concurrency and Computation: Practice & Experience, 2007)
    - Gaussian elimination in single precision and iterative refinements in double precision
  - But may become more important in exascale for data movement and limited memory reasons
- ☐ Open questions ...
  - Determining when lower/higher precisions should be used in different parts of other types of matrix algorithms
  - Reliability, robustness, accuracy of multi-precision algorithms?





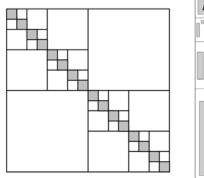
### **Data compression**

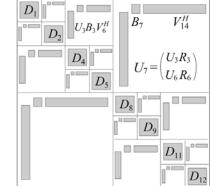
- Matrix computation is data intensive ==> require lot of data movement/communication
- Example ...
  - One of the recent active research areas has focused on using some form of data compression to improve the performance of certain classes of matrix solvers
  - For matrices arising from the solution of PDEs with smooth kernels,
     off-diagonal blocks in the LU factorization often have low rank
    - Gu, Li, Xia, ...
    - Weisbecker, ...



#### Data compression in sparse matrix factorization

- ☐ General idea ...
  - Apply SVD to a rank-deficient off-diagonal block
     => obtain a compact representation
  - Can apply the idea recursively and result in a hierarchical structure





- ☐ Advantages ...
  - Lower storage requirements but essentially maintaining same accuracy
  - Result in less communication because the compact representation has to move less data
  - Also often require fewer operations overall (even though additional work is required to compute the compression)



### Data compression in sparse matrix factorization

- □ Test problem (Li): 3D seismic imaging Helmholtz equations up to 600³ cubic grids (216M equations)
  - 16,000+ cores: 2x faster, uses 1/5 of memory vs a sparse direct solver based on Gaussian elimination
- Open questions ...
  - Generalizations to other classes of matrices?
    - For other matrices, can use the approach to compute approximations, which can then be used as preconditioners
  - Data compression in other matrix algorithms?
  - Complexity analysis Trade off between compression cost and possible reduction in memory?
  - Robustness, reliability, accuracy?



### Randomization and Sampling

- Randomized algorithms have gained quite a bit of popularity in recent years.
  - Not entirely because of exascale computing
  - But some interesting ideas here
- Example ...
  - Consider an m x n matrix A, where m and n are very large.
  - Suppose we want to get a low-rank approximation of A.
    - Best rank-k approximation can be obtained using SVD
    - But require access to the entire matrix A



### Randomized algorithms

- ☐ Friedland, Mehrmann, Miedlar, Nkengla (2011) ...
  - Choose p and t<sub>max</sub>
  - Repeat t<sub>max</sub> times
    - Generate index sets I and J of size p at random
    - Determine numerical rank r<sub>IJ</sub> of A(I,J)
    - Compute  $\pi_{IJ}$  = product of the first  $r_{IJ}$  singular values of A(I,J)
  - Consider those A(I,J) for which  $r_{IJ}$  are the largest and pick the one such that  $\pi_{IJ}$  is the largest. Compute the best rank-k approximation of this particular A(I,J) ... denote by  $A_{IJk}$ 
    - Let C = A(:,J) and R = A(I,:)
    - Let B be the pseudo-inverse of A<sub>IJk</sub>
    - Use CBR as a rank-k approximation of A





### Randomized algorithms

- ☐ Does it really work?
  - Apparently work on matrices from image processing
  - Can be extended to tensors
- ☐ Advantages ...
  - Do not need entire A; just need to be able to sample A
  - Completely parallel
    - Can start different sequences of samples in parallel
    - Can try different t<sub>max</sub>
- ☐ Open questions ...
  - Other matrix problems? Other scientific problems?
  - Other randomization/sampling techniques?
  - Robustness, reliability, accuracy?
  - What if the approach fails?





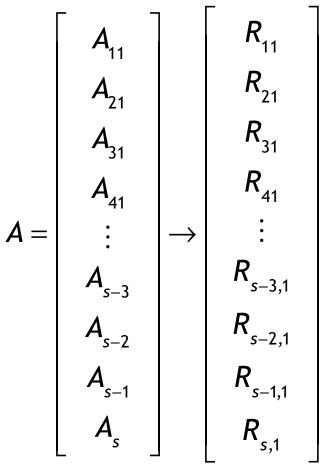
#### **Communication reduction**

- Communication is becoming more and more expensive relative to computation
  - Either moving data within the local memory system or across the network in a distributed memory setting
- ☐ Important to design algorithms to reduce the amount of communication as much as possible
- ☐ Example ...
  - QR factorization of a tall, skinny matrix



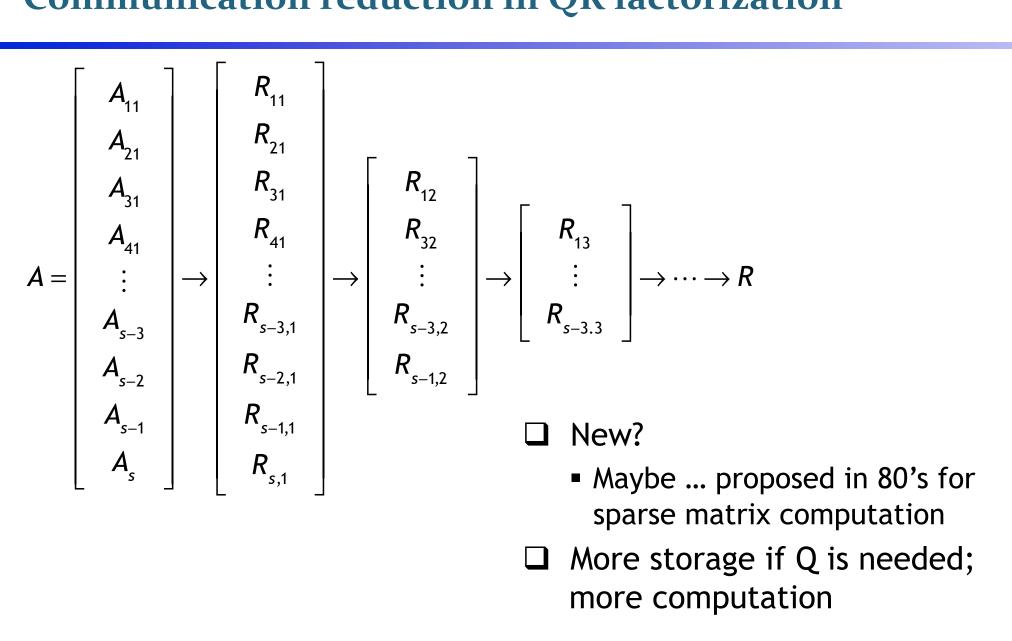
#### Communication reduction in QR factorization

- ☐ Demmel, Grigori, Hoemmen, Langou (2008)
  - Consider computing the QR factorization of an m x n dense matrix A, where m >> n
  - TSQR (Tall Skinny QR):
    - Orthogonal reductions based on a binary tree
    - Partition rows of A into blocks and compute QR factorization of each block
    - Reduce the triangular factors in a pairwise fashion
    - Then continue the reduction repeatedly until only one triangular factor is left





### Communication reduction in QR factorization





### Communication reduction in QR factorization

- ☐ Complexity ...
  - P processors,
     1D mapping,
     counting along
     critical path

|            | TSQR                                      | ScaLAPACK                                 |
|------------|-------------------------------------------|-------------------------------------------|
| # messages | log(P)                                    | 2n log(P)                                 |
| # words    | $\frac{1}{2}[n^2 \log(P)]$                | $\frac{1}{2}[n^2 \log(P)]$                |
| # flops    | $(1/P)[2mn^2] + \frac{1}{3}[n^3 \log(P)]$ | $(1/P)[2mn^2] + \frac{1}{2}[n^2 \log(P)]$ |

• m = 100,000,  

$$\left\lceil n / \sqrt{P} \right\rceil = 50$$
,  
time in seconds

| P  | TSQR  | ScaLAPACK |
|----|-------|-----------|
| 1  | 9.68  | 12.63     |
| 2  | 15.71 | 19.88     |
| 4  | 16.07 | 19.59     |
| 8  | 11.41 | 17.85     |
| 16 | 9.75  | 17.29     |
| 32 | 8.15  | 16.95     |
| 64 | 9.46  | 17.74     |



# Synchronization reduction

- ☐ Synchronizations can be become bottlenecks
  - Known for a long time
  - But may become worse under exascale
- ☐ Example ...
  - The conjugate gradient algorithm
    - An iterative method for solving sparse system of linear equations
    - Rely on matrix-vector multiplication and inner products

$$\gamma_{k} = \langle r_{k}, r_{k} \rangle 
\beta_{k} = \gamma_{k} / \gamma_{k-1} 
\rho_{k} = r_{k} + \beta_{k} \rho_{k-1} 
v_{k} = A \rho_{k} 
\sigma_{k} = \langle \rho_{k}, v_{k} \rangle 
\alpha_{k} = \gamma_{k} / \sigma_{k} 
x_{k+1} = x_{k} + \alpha_{k} \rho_{k} 
r_{k+1} = r_{k} - \alpha_{k} v_{k}$$

one step of the conjugate gradient algorithm



# One step of the conjugate gradient algorithm

$$\gamma_k = \langle r_k, r_k \rangle$$

$$\beta_{k} = \gamma_{k} / \gamma_{k-1}$$

$$p_{k} = r_{k} + \beta_{k} p_{k-1}$$

$$\mathbf{v}_{k} = A \mathbf{p}_{k}$$
 $\mathbf{\sigma}_{k} = \langle \mathbf{p}_{k}, \mathbf{v}_{k} \rangle$ 

$$\alpha_k = \gamma_k / \sigma_k$$

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \alpha_k \mathbf{p}_k$$

$$r_{k+1} = r_k - \alpha_k V_k$$

$$s_{k} = A r_{k}$$

$$\gamma_{k} = \langle r_{k}, r_{k} \rangle$$

$$\delta_{k} = \langle r_{k}, s_{k} \rangle$$

$$\beta_k = \gamma_k / \gamma_{k-1}$$

$$p_{k} = r_{k} + \beta_{k} p_{k-1}$$

$$\mathbf{v}_{k} = \mathbf{s}_{k} + \beta_{k} \mathbf{v}_{k-1}$$

$$\sigma_{k} = \delta_{k} - \beta_{k}^{2} \sigma_{k-1}$$

$$\alpha_k = \gamma_k / \sigma_k$$

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \alpha_k \mathbf{p}_k$$

$$r_{k+1} = r_k - \alpha_k V_k$$

- Also not new ...
  - D'Azevedo, Eijkhout, Romine (1993)
    - The two are mathematically equivalent
    - Based on identities in conjugate gradient
  - There are other variants, but not all have the same numerical behavior

### Comm/Sync avoiding/reducing algorithms

- □ Notes ...
  - Some of the ideas in some of these algorithms are not entirely new, but being re-discovered
  - It's often the case that such algorithms may require more memory and/or more computation
  - Some algorithms have communication/synchronization complexities that match lower bounds (Demmel's group)
  - In some cases, the algorithms may not be as stable as conventional algorithms
- ☐ Open questions ...
  - New algorithms that require less communication/synchronization?
  - Can an existing algorithm be reformulated to reduce communication/ synchronization?
  - Numerical behavior of such algorithms?





# Fine-grained parallel algorithms

- ☐ Exascale computing promises high degree of parallelism
- ☐ Fine-grained parallel algorithms for matrix problems?
- ☐ Probably need to come up with out-of-the-box ideas
- ☐ Example ...
  - Compute an incomplete LU factorization
  - Traditional approaches incomplete version of Gaussian elimination
  - Chow (2014)
    - All nonzero entries of L and U are computed in parallel and asynchronously
    - Let S be the desired sparsity pattern of L+U



### **Fine-grained ILU**

- $\square$  Compute  $L_{ij}$ , i > j,  $(i, j) \in S$  ,  $U_{ij}$ ,  $i \le j$ ,  $(i, j) \in S$ 
  - subject to  $\sum_{k=1}^{\min(i,j)} L_{ik}U_{kj} = A_{ij}, (i,j) \in S$
- $\Box \text{ This results in } L_{ij} = \frac{1}{U_{jj}} \left( A_{jj} \sum_{k=1}^{j-1} L_{ik} U_{kj} \right), \quad i > j$

$$U_{ij} = A_{ij} - \sum_{k=1}^{i-1} L_{ik}U_{kj}, \quad i \leq j$$

which is just a nonlinear equation of the form x = G(x)

- Starting with an initial guess of L and U, one can iterate until convergence
- In the extreme case, each L<sub>ij</sub>/U<sub>ij</sub> can be assigned to one processing unit and computed asynchronously, leading to a very fine-grained parallel algorithm



# Fine-grained parallel algorithms

- ☐ Results ...
  - See Hittinger's talk
- ☐ Advantages ...
  - Since L, U are incomplete factors, really no need to compute them accurately ==> just a few iteration may be enough
  - Possibility of exploiting a lot of cores
- Open questions ...
  - Similar fine-grained algorithms for other matrix problems?
  - Techniques for solving the nonlinear equations?
    - Converge to the desired solution?



#### Resilience

- Resilience is concerned with dealing with and recovering from faults
- ☐ Example ...
  - Suppose we are solving a linear system

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

- Suppose there is a fault and x<sub>1</sub> needs to be recovered
- Assume that x<sub>2</sub> is known and the value is trustworthy
- How can x₁ be recovered?



#### Resilient linear solvers

- ☐ Langou, Chen, Bosilca, Dongarra (2007)
  - Linear interpolation: Solve  $A_{11} x_1 = b_1 A_{12} x_2$
  - A-norm of forward error associated with iterates computed by restarted CG or PCG is monotonically decreasing
- ☐ Giraud et al (2014)
  - Least squares interpolation

$$\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} \mathbf{x}_1 = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - \begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix} \mathbf{x}_2$$

- Solve for  $x_1$  as a least squares problem
- Monotonic decrease of residual norm of minimal residual Krylov subspace methods after restart



#### Resilient linear solvers

- ☐ Techniques can be extended to multiple faults
- Similar ideas can be applied to eigenvalue problems
- Open problems ...
  - Resilient algorithms for other matrix problems?
  - Numerical behavior of such algorithms?
  - What to do if recovery fails?



### **Summary**

- ☐ Challenges along the path to exascale ...
  - High degree of parallelism
  - High communication & synchronization overhead
  - Deep memory hierarchy
  - Limited memory
  - Resilience
- ☐ What we need to overcome these challenges ...
  - Some existing approach may evolve
  - Re-visit old ideas
  - Need new and out-of-the-box ideas



### **Summary**

- ☐ Research opportunities ...
  - Fine-grained parallel algorithms
  - Communication and synchronization avoiding/reduction algorithms
  - Algorithms based on randomization and sampling
  - Multiple-precision algorithms
  - Use of data compression
  - Resilient algorithms
- One of the common themes ...
  - Robustness, reliability, accuracy

