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1. Introduction 
As processor speeds recently reached the frequency limit of 3 gigahertz with the given materials 

and nanoscale fabrication capabilities, many-core parallel computing architecture has become the only 

resort to further increase the computational capacities. Some new issues emerge when we design 

modeling and simulation (M&S) methods and algorithms for extreme-scale scientific computing. Given 

that a large number of processors with heterogeneous architectures (e.g. CPUs, GPUs, single-precision, 

double-precision, etc.) are involved in computation, both the resilience of task management (for abnormal 

disruptions or complete failures of some processors) and the reliability of numerical computation (for 

non-uniform treatment of round-offs in floating-point computation) are important.  

Additionally, uncertainty quantification is particularly important in M&S of multiscale complex 

systems, such as biological cells, atmospheric turbulence, and materials-product hierarchies, because the 

traditional modeling by reductionism always provides simplified views without the complete knowledge. 

In general, two types of uncertainties are recognized. Aleatory uncertainty is inherent randomness in 

systems, whereas epistemic uncertainty is due to lack of perfect knowledge. Epistemic uncertainty has 

different sources, such as lack of data, conflicting information from multiple sources, conflicting beliefs 

among experts’ opinions, lack of time for introspection, measurement errors, lack of dependency 

information, etc. Given the very different natures of the two types of uncertainties, it is important to 

differentiate and treat them separately in M&S. Neglecting epistemic uncertainty may lead to decisions 

that are not robust. Mixing epistemic and aleatory uncertainties may increase costs of risk management.  

Beyond steady-state or static analysis of uncertainty, the simulation of system dynamics is of 

particular importance in predicting chemical reactions, liquid and gas transport phenomena, high-energy 

particle diffusions and irradiations, and others. There are no stochastic dynamics models that distinguish 

aleatory and epistemic uncertainties. Existing stochastic differential equations rely on time-consuming 

sensitivity analysis (e.g. second-order Monte Carlo, design of experiments) to evaluate the parameter and 

model uncertainties. Existing imprecise probability representations (e.g. Dempster-Shafer evidence 

theory, probability bound analysis, possibility theory, and others) are not suitable for computationally 

intensive dynamics simulation and tend to be overly pessimistic in information fusion.  

2. Generalized interval and generalized interval probability 
Here, we present a new simulation formalism that distinguishes aleatory and epistemic 

uncertainties based on generalized interval probability [1]. The new form of imprecise probability is 

based on generalized interval, where the probabilistic calculus structure is significantly simplified 

because of the Kaucher arithmetic. A generalized 

interval : [ , ] ,x x x xx  is not constrained by 

x x  any more. Therefore, [.2,.1] is also a valid 

interval and called improper, while [.1,.2] is called 

proper.  

Generalized interval has better algebraic 

and semantic properties. Traditional set-based 

intervals form a semi-group because of the lack of 

invertibility, e.g. [.1,.2]−[.1,.2]=[−.1,.1]≠0. In 

contrast, generalized intervals form a group. 

[.1,.2]−[.2,.1]=0. The introduction of improper 

intervals is analogous to the introduction of 

negative numbers in real analysis, as illustrated in 

Fig.1. We do not need negative numbers in our Fig.1: Computational advantage of generalized interval 

Can you manage to calculate with only zero and positive 

numbers to solve all scientific/engineering/financial/… problems?

Similar to negative numbers, improper 
intervals in generalized interval system are 
“negative” intervals that can make our lives 
much easier!

 classical set-based interval is 

defined as

 Semi-group: no invertibility

 Generalized interval is defined as

 Group
[.1,.2]−dual[.1,.2]
=[.1,.2]−[.2,.1]=[0,0]=0

 The widths of generalized intervals 
could reduce during calculation
[1,3]+[2,1]=[3,4]
[1,3]+dual[1,3]=4

: [ , ] ,x x x xx
, : |x x x x x x

.1,.2 .1,.2 .1,.1 0
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daily calculations. However they do bring much better algebraic properties to our number systems with 

ease of calculation. As a result of introducing improper intervals, the calculus in generalized interval 

probability is very similar to the one with the traditional precise probability. This resemblance with ease 

of calculation enables large-scale simulations based on interval probability.  

3. Stochastic dynamics simulation under both uncertainties 
The time evolution of both aleatory and epistemic uncertainties can be simulated based on 

generalized interval probability. As two special cases of the differential Chapman-Kolmogorov equation 

with generalized interval probability, generalized Fokker-Planck equation (gFPE) [2] plays a vital role to 

describe various drift-diffusion processes, including system vibration and dynamics, two-phase flow, 

high-energy particles irradiation, etc., whereas interval master equation (IME) [3] models chemical 

reactions and long time scale state transitions. The dynamics of both aleatory and epistemic uncertainties 

can be concisely and efficiently captured. 

3.1 Imprecise Markov chain  
Interval arithmetic provides rigorous bounds for round-off error and approximation-related model 

error. In addition, interval probability provides another advantage of relaxing the standard assumption of 

Markovian property under Gaussian distribution while maintaining computability, since the lower and 

upper probabilities characterize a collection of different probabilistic estimations as a result of the 

deviation from the standard assumption. That is, the interval probability provides the effect of non-

Markovian properties. 

We developed an imprecise Markov chain model based on generalized interval probability. The 

new model can be intuitively kept track of with its resemblance to the classical Markov chain. It offers 

much better computational efficiency than other forms of imprecise Markov model.  

3.2 Solving gFPE 
A path integral algorithm [2] has been developed 

to solve the generalized Fokker-Planck equation so that 

the lower and upper probability densities are computed 

simultaneously. As shown in Fig.2, the time evolution of 

interval probability can be efficiently computed, where 

the lower and upper bounds enclose the real-valued 

distribution. Again, other forms of imprecise probability 

just cannot provide such computational efficiency.   

3.3 Solving IME 
A Krylov subspace projection algorithm [3] has 

been developed to solve the interval master equation. The approach efficiently saves memory space 

without the need to store the infinitesimal generator. Additionally, the logic interpretation properties of 

generalized interval [4,5,6] can be applied to verify the 

completeness (no under-estimation) and soundness (no over-

estimation) of interval bounds. Most importantly, there is no need 

for additional simulation runs for sensitivity analysis. 

The simulation approach by solving the above two 

equations provides a holistic picture of interval probability 

distribution at any particular time and simulates the evolution of 

the overall probability densities, which is helpful for us to check 

the effect of rare events with very small probabilities to occur. 

Because the probability densities corresponding to the rare events 

are close to zero, the quantification of numerical errors associated 

with the floating-point arithmetic operation becomes critical for the accuracy of predictions. Interval 

arithmetic can provide rigorous error bounds for such small values. By selectively setting the modes of 

rounding on computers for certain states of interest, the computation of generalized interval probability 

can bring the benefits of reliable simulation and rigorously verifiable prediction.  

Fig.2: Time evolution of interval probability 
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Fig.3: Interval probability vs. Monte 
Carlo sensitivity analysis 
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