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Introduction	
Semiclassical molecular dynamics simulations [1-6] study the atomic level motions, and provide a 

generally applicable tool for capturing quantum dynamics effects, making them essential for a broad range of 
studies in chemical and materials science [6-20]. A semiclassical theory that has proven to be one of the most 
successful in describing quantum effects is the coherent states implementation of the semicalssical-initial 
value representation (SC-IVR) [21-26], which goes under the name of Heller-Herman-Kluk-Kay (HHKK) SC-
IVR approximation. The HHKK SC-IVR approximation of the quantum mechanical evolution operator needs 
the monodromy matrix [26], whose integration requires the Hessian at each time step.  Thus, the trajectory 
calculation for a semiclasscial simulation needs both the gradient and Hessian at each time step. SC-IVR 
dynamics depends only on the local potential, i.e. it can be performed “on-the-fly” as a direct ab initio 
molecular dynamics method. This aspect is of fundamental relevance, as a major challenge in quantum 
dynamics is the simulation of complex systems where the development of an analytic potential energy surface 
may be a formidable task. Ab initio SC-IVR dynamics is very promising for the quantum dynamics of complex 
systems but at a higher computational cost than SC-IVR on fitted surfaces [27-33].  

Enormous Computation Cost	
A quantum mechanics electronic structure calculation is required to obtain the gradient and Hessian of 

the potential energy. This calculation involves solving an eigen-related problem of the Schrodinger equation, 
and has an enormous computation cost (see the SIAM Review survey paper [34] by Saad et al., with 
description of the two approaches that won the Nobel Prize in Chemistry in 1998).  With minutes to hours of 
execution time for an electronic structure calculation for a few atoms on a multi-core processor, a trajectory 
that has hundreds to thousands of time steps takes hours to months of computation time on a multi-core 
processor.  In addition, a dynamics study usually requires calculating tens to thousands of trajectories.  	

Approaches to Reduction of Computation Time	
There have been substantial, multidisciplinary efforts for reducing the computation time of these dynamics 

simulations. Semi empirical methods [35,36], frozen-core approximations [37], etc. [38] are chemical physics 
theories that target the reduction of the computation cost of electronic structure calculations. The computation 
time may be further reduced by parallelization of the electronic structure calculation.  These approaches have 
been implemented in DOE-funded electronic structure calculation packages [39-41], including NWChem [39].  	

In addition to the aforementioned approaches, another obvious way for further reducing the computation 
time of ab initio dynamics simulations is to utilize the parallelism in the calculations of multiple trajectories, i.e. 
to let multiple trajectories be calculated on different and mutually disjoint sets of compute nodes, while the 
electronic structure calculation at each time step of a single trajectory is computed in parallel by all cores of the 
set of compute nodes assigned to compute the trajectory.  	

Thus, a dynamics simulation study can have two levels of parallelism: the coarse-grain parallelism offered 
by the parallelizable computations of multiple trajectories, and the parallelism in each electronic structure 
calculation that is performed at each time step of a trajectory. For existing simulation methods, these two 
levels of parallelism are almost all the parallelism that can be utilized by a parallel machine for an ab initio 
dynamics simulation. To our knowledge, little additional parallelization can be done for further measureable 



computation time reduction. That is, we believe that the vast majority of the parallelism in the calculation of a 
single trajectory is in each electronic structure calculation (ESC). We believe this since (i) different electronic 
structure calculations are at different time steps and are inherently not parallel, and (ii) the cost of other 
computations in a trajectory calculation is negligible compared with that of ESCs.  	

Can We Do Better?	
While the aforementioned two levels of parallelism is almost all the utilizable parallelism, further reduction 

of computation time without sacrificing the simulation quality calls for unconventional, or revolutionary, 
approaches. An approach we consider is one that destroys the embarrassing parallelism of multiple trajectory 
calculations by creating data sharing among the calculation of the trajectories.	

The SC-IVR approximation of the quantum mechanical evolution operator needs the gradient and 
Hessian of the ab initio potential energy at each time step, where the Hessian calculation comprises a 
substantial fraction of the computation cost.  Recently, this team of researchers invented a class of high-
accuracy approximation methods for high dimensional data [42], and applied them to the Hessian 
approximation for semi-classical dynamics simulations [43,44]. With our Hessian approximation method, for 
every K time steps, the ab initio Hessian is calculated in the first step followed by K-1 steps of the Hessian 
approximation. Our on-going work for 10-atom glycine shows that the Hessian approximation with K = 10 
produces simulation results almost identical to those obtained with a complete ab initio Hessian simulation. A 
glycine trajectory with the B3LYP/6-31G** method takes 11.5 days on two quad-core processors for 5000 time 
steps without the Hessian approximation, and the Hessian approximation with K = 10 reduces the computation 
time by over 6 times to less than 2 days.  	

Then the question is may the Hessian approximation be extended to exascale computing to enable 
simulations of larger ensembles of atoms. The Hessian approximation needs ab initio data that are adequately 
close so the approximation is accurate. With the independent and embarrassingly parallel computing of 
multiple trajectories, only previously calculated ab initio data for the same trajectory is used for each Hessian 
approximation. Sharing ab inito data between multiple trajectories destroys the embarrassing parallelism, but 
will lead to more and closer data points for a better approximation, offering the prospect of reducing the cost of 
the Hessian calculations to a level measurably lower than when each trajectory is calculated independently.  	

But critical issues remain in order to determine if the benefits of such data sharing exceed the incurred 
overheads. Issue 1 is that using ab initio data from multiple trajectories will improve the approximation 
accuracy, but will incur much higher communication cost if a large amount of data from the trajectories needs 
to be sent among processors.  A solution to be investigated is to not send the data but send the trajectory 
calculation, which however calls for careful planning of the partition/distribution of ab initio data among different 
processors and the use of a good partition/distribution strategy based on the high-dimensional space of the 
nuclear coordinates.	

Issue 2 is that by including more data from multiple trajectories, it takes more time to find data points for 
the approximation. The search index is the high-dimensional nuclear coordinates, so an efficient algorithm is 
needed to search such a high-dimensional data set, much larger than that for a single trajectory. Efficient 
search algorithms exist for one-dimensional data, e.g. binary search of 1-D sorted data. High-dimensional 
search algorithms also exist. Adaptation of existing, or invention of new, search algorithms need to be 
investigated to take care of the particular needs of the problem.	

In addition to the above two overhead-related issues, another obvious one is the following. The approach 
we used for the Hessian approximation is Hessian updating, which approximates the Hessian in a fashion that 
one direction (or one dimension) of the Hessian is approximated with the closest available data while all other 
directions remain almost unchanged. This is a good high-dimensional data approximation when there is only 
sparse data available for the approximation. There are existing meshless methods for high dimensional data 
[45-48], and to the best of our knowledge none of them have been used for the Hessian approximation. While 
our analysis shows updating methods are more suitable for approximating high-order differentiation data than 
meshless methods, it is tempting to investigate if better Hessian updating methods can be invented that 
incorporate some of the good features of other high-dimensional data approximation methods.	
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