Multiscale modeling of fission gas behavior for BISON

G. Pastore*, L.K. Aagesen, Y. Zhang, J.D. Hales
Idaho National Laboratory, Idaho Falls, United States
*giovanipastore@inl.gov

L. Luzzi, D. Pizzocri, T. Barani
Politecnico di Milano, Milan, Italy

D.A. Andersson, C.R. Stanek
Los Alamos National Laboratory, Los Alamos, United States

W. Setyawan, R.J. Kurtz
Pacific Northwest National Laboratory, Richland, United States

B.D. Wirth
University of Tennessee, Knoxville, United States

NEA 14th WPMM Meeting, Boulogne-Billancourt, 15-17 May 2018
Outline

- BISON fuel performance code
- Fission gas model for UO$_2$
- Examples of validation results
- Lower-length scale modeling for the parameters
- Multiscale fission gas model for U$_3$Si$_2$
- Outlook
- Acknowledgements
BISON fuel performance code

- Finite element based, engineering fuel performance code based on INL’s open-source MOOSE framework
- Solution of fully-coupled equations of thermo-mechanics in 1D, 2D, or full 3D
- Used to analyze various fuel forms including LWR, TRISO, and fast metal and oxide fuels
- Designed for efficient use on parallel computers

Stages of fission gas behavior

1. **Fission reactions**
 - Generation of fission gases (Xe, Kr)

2. **Intra-granular gas** (single atoms)
 - Diffusion
 - Trapping
 - Resolution

3. **Intra-granular gas** (bubbles)
 - Diffusion

4. **Grain-boundary gas**
 - Diffusion

5. **Grain-boundary bubble swelling**

6. **Saturation / Micro-cracking**

7. **Fission gas release**
Intra-granular model

- Computes intra-granular bubble evolution and swelling, and gas diffusion to grain boundaries
- Derived from cluster dynamics equations, simplified for application to engineering codes
- Can be informed with improved parameters from advanced lower-length scale models

\[
\frac{\partial N}{\partial t} = +v - \alpha_n N
\]

\[
\frac{\partial m}{\partial t} = +2v + \beta_n N - \alpha_n m
\]

\[
\frac{\partial c_1}{\partial t} = +yF + D\nabla^2 c_1 - 2v - \beta_n N + \alpha_n m
\]

Grain-boundary model

- Bubble growth with inflow of atoms and vacancies (Speight and Beere, Met. Sci. 9, 1975)

\[\frac{dn_v}{dt} = \frac{2\pi D_v \delta_g}{kTs} (p - p_{eq}) \]

- Bubble coalescence with geometrical reasoning (White, JNM 325, 61-77, 2004)

- Gaseous swelling coupled to FGR

- Two FGR contributions:
 - Grain-boundary saturation
 \[\frac{dF_c}{dt} = \frac{d(N_{gr}A_{gf})}{dt} = 0 \quad \text{if} \quad F_c = F_{c,\text{sat}} \]
 - Burst release associated with micro-cracking

Separate-effects validation examples

Comparisons of local grain-boundary swelling in power-ramped UO$_2$ (Pastore et al., NED 256, 2013). Experimental data from White et al., R&T/NG/EXT/REP/0206/02, 2006.

Integral validation examples

Risø-3 AN4

Integral FGR vs time during LWR fuel rod power ramp experiment (Risø-3 AN4)

Integral FGR at EOL for 19 LWR fuel rod power ramp experiments
Integral validation examples

Radial profiles of Xe concentration after ramp tests calculated with BISON and PIE data
CABRI REP Na-3 power pulse test

Left: Power, calculated energy deposited and radially averaged fuel enthalpy at peak power node

Right: FGR with fuel centerline temperature. The inset shows a shorter time around the power pulse
CABRI REP Na-3 power pulse test

Right: FGR with fuel centerline temperature. The inset shows a shorter time around the power pulse
Atomistic modeling for Xe diffusivity

- Atomistic (DFT, empirical potential) modeling for the diffusivity of Xe in the UO$_2$ matrix is performed at Los Alamos National Lab.
- Early work led to a new diffusivity model that was implemented in BISON (D.A. Andersson et al., JNM 451, 225, 2014)
- Further work is in progress at LANL
Atomistic modeling for Xe resolution

- Molecular dynamics (MD) calculations for the Xe resolution rate from intra-granular bubbles were performed at Pacific Northwest National Lab. (W. Setyawan et al., in preparation)
- Will be used to inform the engineering model in BISON
Phase-field modeling for grain-boundary saturation

- Phase-field model of bubble evolution at grain faces and edges (triple junctions) was developed at INL.
- Grain-edge coverage and saturation was correlated to grain-face coverage.
- Can be used to inform the engineering model with thresholds for FGR from the grain edges.

Tucker, Radiation Effects, 53, 1980
Multiscale fission gas model for U_3Si_2

- Initial model of fission gas behavior in U_3Si_2 for BISON
- Informed by atomistic calculations for the basic parameters (resolution, diffusivity), to fill the experimental data gap
- Sensitivity analysis to help addressing future research

![Shimizu, Report NAA-SR-1062, 1965](image)

Figure 3.2
Re-solution parameter calculation for several fuel types using the values in Table 3.1.

$\text{U}_3\text{Si}_2\text{r} = 10.0$ g/cm3

$\text{U}_3\text{Si}_2\text{r} = 10.0$ g/cm3

$\text{U}_3\text{Si}_5\text{r} = 10.0$ g/cm3

$\text{U}_3\text{Si}_2\text{r} = 12.2$ g/cm3

Figure 3.3
Re-solution parameter calculation for different silicide fuels with the exact same density of 10 g/cm3.

C. Matthews, D. Andersson, C. Unal, LANL, 2016)
Outlook

- Inform BISON fission gas models with new parameters from atomistic models of Xe diffusion and resolution
- Extend intra-granular model to bubble coarsening and the associated fuel swelling during transients/high burnup
- Extend fission gas model to gaseous porosity evolution in the high burnup structure (HBS)
- Continued model validation
Acknowledgements

- This research is supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) and Office of Science (SC), Office of Advanced Scientific Computing Research (ASCR) through the Scientific Discovery through Advanced Computing (SciDAC) project on Fission Gas Behavior.

- The work is also supported by the U.S. DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program.