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Plasma-Materials Interactions — Materials under Extreme Conditions

Gilbert et al. Nucl. Fusion 52 (2012) 083019
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Plasma Material Interactions

B. Wirth et al. MRS Bulletin 36, 2011
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Complex interactions between plasma and the material
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Tungsten as PFC Material of Choice

PROS Critical variables CONS

* High melting temperature. .
* High sputter threshold. y
* Good heat conduction.

e Small trittum retention.

 Radiation tolerance (compared to austenitic

steels). .
* High creep resistance. .
* Good high-temperature strength. .
* Low vapor pressure. .
* Low neutron activation. .

Very low fracture toughness.

Blistering (<800 K); He bubbles (1250-1600 K); pit,
holes and bubbles (1600 K).

Fuzz formation ?
Swelling?
Radiation tolerance (not enough for fusion conditions).

Transient melting and deformation.

Low oxidation resistance.

Heat flux in transients.

High DBTT.

Advanced Designs

Controlled Microstructures

Design variables

Alloy Composition

- Ultra-fine and nanocrystalline W - W-X
- Additive Manufacturing H - High Entropy Alloys
- Nano-composites (multilayered ODS steels

materials)
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Computational Methods

* Non-equilibrium molecular dynamics
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Computational Methods

* Non-equilibrium molecular dynamics
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Computational Methods

* Non-equilibrium molecular dynamics
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Irreversible Thermodynamics Analysis

 We have used irreversible thermodynamics to rationalize the NEMD results. The
heat and atomic species (He atoms or SlAs) fluxes are coupled through the

transport coefficients and thermodynamic driving forces
Jo\ _ (Laa Las\ ( V(1) \ _ (Lag V(1)
Js Lsg Lss) \—V (&) Lgs LSS —V (&)
Using Fourier’s law, the heat flux can be writtenas  J, = —xVT + L,V ( é;f)

Setting the activity coefficient equal to 1 (dilute limit), the chemical potential can be

written as
s — ]CBT In (CIZ‘S)
Vz, Vg
Therefore, Jq = —kVT — kBqu—, — sst T2 - B ss—
S 335
with qu — LssQ: Q: is the heat of transport
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Mass (Atomic Species) Transport Equation

+ Since there is no flux of particles in or out of the system JS =0

sk
_kaxS _ o VL rs = Cpexp (— Q82dT)
T 5 T2 kT
Q* —> which decays exponentially as shown by MD
- — S nggm - %k
VIngs =gV g Mowe obian (07 = —0.0081ksT

Relating Fick’s law with the mass transport equation
. Ds CoLs Ds Cs

kpLgs
B Gy, = DoV, = D,Ve, — Lo =——=
s kB kB

And substituting

5 into the heat flux equation
Ls

LSSQ?)

T2 |

Jy = —kVT (1 —

*2 *2
— kYT (1 _ DGt :c> DCoC;

kpkT* kg K12

Hence, the heat transport equation can be decoupled from the mass transport
equation in the dilute case.
x(T") seems to have a temperature dependence, but it does not change the physics
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Transient Effects

With a heat of transport available, we can use the balance equations to
predict the material response during transients
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Conclusions

- We have studied the effect of thermal gradients on transport
properties of He, V and SIA in W.

« Defects and impurities tend to go to the hot regions of the sample.

« We have been able to compute the heat of transport for each species
relying on an nonequilibrium thermodynamics formalism.

« We have analyzed transients and observed a significant effect of the
He concentration profile when the flux coupling is used.

« We plan to analyze the coupling for small impurity and defect clusters.
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Transient Effects

* The final steady-state profiles are shown below, highlighting the impact
of the effect (Soret diffusion) in the species distribution in the material

He concentration at steady-state
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Outstanding questions
 How relevant can this effect be for ELMs and/or disruptions?

« What is the effect of the electronic thermal conductivity (only the
lattice thermal conductivity is accounted for in classical MD)?

 What is the origin of the negative heat of transport? Phonon wind?
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