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Introduction

• Wall plays important role in plasma 
stability, transport, and particle balance

• XGC1 simulations show that neutrals 
enhance ITG turbulence through 
increase of Ti gradient and reduction of 
E×B shear1

• 80% of pedestal particle loss in type-I 
ELMs is dynamically retained in wall 
material2

[1] D.P. Stotler et al. Nucl. Fusion 57 (2017) 086028
[2] A.Yu. Pigarov et al. Phys. Plasmas 21 (2014) 062514
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Introduction (continued)

• wall saturation in JT60 
repetitive long pulse discharges 
lead to MARFE, increased core 
density, and confinement 
degradation3

• Plasma transport simulations 
usually ignore wall state 
assuming constant recycling 
coefficient

• So far there were few attempts 
of self-consistent dynamic 
plasma-wall modeling

[3] T. Nakano et al. Nucl. Fusion 46 (2006) 626
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Outline

• UEDGE-FACE coupled model

• Steady-state plasma solutions

• Dynamic plasma-wall modeling

• Thermal desorption instability
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FACE code
• Reaction-diffusion 1D code for multi-species transport in wall material4

• Bulk

• Surface

• Heat

5[4] R.D. Smirnov et al. Fusion Sci. Technol. 71 (2017) 75
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UEDGE-FACE coupling
• Explicit coupling in fully time-

dependent mode

• UEDGE and FACE use internally fully 
implicit solvers

• Conserving particles

• Both hydrogen ion and neutral fluxes 
to wall are considered

FACE

UEDGE

BASIS shell

Particle fluxes: 

Γi, Γa 

Heat flux:

Q

Recycling

Albedo

Coupling time step Δt:
codes can sub-cycle with smaller

step till convergence on Δt

Recycling = (1−Ri)Γout/Γimp+Ri
Albedo= (1−Ra)Γout/Γimp+Ra
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plasma wall

Γ𝑖

Γ𝑎

Γ𝑖 1 − 𝑅𝑖

Γ𝑎 1 − 𝑅𝑎
Γ𝑖𝑅𝑖 𝐸𝑖

Γ𝑎𝑅𝑎 𝐸𝑎

Γ𝑜𝑢𝑡

Γimp = Γi(1−Ri)+Γa(1−Ra)



Model parameters

• Using simplified 1D model

• X - poloidal direction in a magnetic flux tube

• Total number of hydrogen particles is conserved “closed box”

• Nitrogen impurity with increasing toward the wall fixed fraction density (5% 
at wall, ~0.1% at X-point)

• Steady-state upstream heating source 2.3 MW/m3

• ELM pulse x15 peak heating power; τ =3 ms duration; ~sin2(πt/τ) time profile

• Tungsten wall with single kind of H trap (Edt=0.9eV, 0.1 at.%); Tback=500K

• Heat transmission coefficients 𝛾𝑖 = 3.5, 𝛾𝑎 = 2.0; barrier 𝐸𝑖𝑚𝑝 = 2 𝑒𝑉

• Steady state initial conditions for both plasma and wall

X0 m 4.18 m

1 cm

Tback

2.61 m

X -point

Plasma Wall

Heat source
Symmetry plane
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Plasma steady state

• Steady state depends only on number of particles in plasma N (Recyc, Albd = 1 )
• N<1018 - attached; 1018<N<1.6x1018 – transition; N>1.6x1018 – detached
• Neutral flux monotonically increases, significant neutral heat transport
• Implanted particle flux drops in detached regime
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ELM-like pulse (attached, N=1.0x1018)
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• Plasma mostly recovers after the heat pulse  



Wall profiles (attached, N=1.0x1018)
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• Hydrogen is released from traps and outgassed down to ~1 micron
• Dissolved hydrogen density increases deep in the bulk



ELM-like pulse (semi-detached, N=1.5x1018)
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• ELM induces deep plasma detachment in divertor



Wall profiles (semi-detached, N=1.5x1018)

12

• Higher initial trapped hydrogen concentration due to lower initial Twall
• Significantly more trapped hydrogen is released during ELM



Steady state without impurities

• Heat flux increase 
in detached 
regime due to 
neutral transport 
and radiation 
contributions

• This can lead to 
thermal 
desorption 
instability

Implanted flux
Eimp = 2eV
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Thermal desorption instability

• Evolution of perturbed plasma-wall steady state is simulated
• Simulations confirm thermal desorption instability
• Instability growth is very slow ~1 s-1
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Heat flux Recycling



Summary

• UEDGE and FACE codes are coupled in time dependent mode

• Steady state and dynamic plasma-wall simulations are performed

• Simulations show significant role of neutral heat flux in detached 
divertor

• ELMs can trigger transition to deep detachment by releasing hydrogen 
from wall

• When impurity radiation losses are small, total heat flux to wall can 
increase in detachment leading to thermal desorption instability

• Dynamic simulations confirm the instability, growth rate is low ~1 s-1

• Future work

• Investigate plasma-wall dynamics for series of ELMs

• Include ELM particle source

• More realistic 2D coupling

• Explore plasma-wall instabilities
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