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Abstract

Materials for nuclear applications are subjected to extremely stringent condi-
tions. The incoming energetic particles create different types of defects in the
material that modify the system microstructure. These defects diffuse and interact
with each other and pre-existing features in the material, leading to alterations of
the material properties, and even to failure. To deploy reliable materials for such
extreme applications, a deep understanding of the microstructural changes and
their relation to material properties is critically required. Synergistic experimen-
tal and theoretical studies are paramount to gain such crucial knowledge. In this
work we review one theoretical venue developed over the years to first understand
and then predict the material response upon irradiation: an object kinetic Monte
Carlo (OKMC) approach parameterized to first-principles data. We review the
theory behind the kinetic Monte Carlo (KMC) algorithm and the specifics of
the OKMC as a mesoscale methodology. We describe density functional theory
(DFT) as an ab initio approach that can accurately calculate parameters required
by the OKMC as input data to be able to analyze the microstructure evolution of
the system. Finally, we show two applications lengthily studied in the literature:
the microstructural evolution of both ferritic steels and tungsten under diverse
irradiation conditions.

1 Introduction

Irradiation has the potential to significantly alter the atomic structure of the material
being irradiated. As energetic particles collide with the underlying atomic structure,
extra energy is deposited in the material generating a sequence of structural
modifications that are commonly denoted as defects. It is the evolution of these
defects and their coupling with the material that dictate the resilience of the material
to such irradiation conditions. Defects at the electronic level are known to vary the
cohesive properties of the material (Correa et al. 2012; Draeger et al. 2017) and are
usually characterized by short existence time on the order of femtoseconds. Defects
at the atomic level, such as vacancies and interstitials, may also be created during
the irradiation process. These structural defects are characterized by much longer
lifetimes compared to electronic defects, during which these defects can migrate
and interact with one another, generating new microstructural features that modify
the material properties, and may eventually lead to failure. The time and length
scales required to study the evolution of the irradiation-created defects exceed that
attainable by molecular dynamics (MD) calculations. This is because MD solves
Newton’s equations of motion for an ensemble of atoms using an integration time
step on the order of femtoseconds. This implies that the total number of steps
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needed to reach simulated times of hours is around 3.6 × 1018, far beyond the
current computational capabilities. Accelerated MD (AMD) algorithms (Voter 1997,
1998; Sørensen and Voter 2000) extend the physical time that can be studied using
MD approaches and provide good insights into complex mechanisms, but, because
they also rely on a full description of the interatomic forces, their application is
still limited in the system size as well as the simulated time. The kinetic Monte
Carlo (KMC) algorithm (Elcock and McCombie 1958; Elcock 1959; Young and
Elcock 1966; Bortz et al. 1975; Gillespie 1976, 1977; Voter 2007) also called the
Stochastic Simulation Algorithm provides a methodology to overcome the MD time
limitation. The scope of applications for KMC is extraordinarily wide, ranging
from epidemiology and population kinetics to surface growth or radiation damage.
This chapter reviews the time evolution of this last type of defects generated under
irradiation as analyzed theoretically with a computational tool called object kinetic
Monte Carlo (OKMC).

The specific type of defects generated under irradiation and the spatial cor-
relations between them depend on the irradiation conditions and the material
subjected to irradiation. Under electronic irradiation, usually Frenkel pairs, i.e.,
a vacancy and a self-interstitial, are formed (Was 2007). On the other hand, if
irradiation is performed with neutrons, protons, or heavier ions with high enough
energies, a thermal spike occurs in the material leading to a displacement cascade.
Displacement cascades are commonly characterized by a low density core and a
denser outer shell, i.e., the core is vacancy rich while the periphery is self-interstitial
rich (Was 2007). The main goal of the OKMC is to study how these long-standing
defects diffuse, react, and couple with pre-existing material’s features to be able
to first understand and then predict the microstructural changes taking place upon
specific irradiation conditions. For such end, the OKMC needs the probabilities per
unit time of all the possible events in the system. These probabilities are usually
calculated in the context of transition state theory (TST) (Eyring et al. 1944; Voter
and Doll 1984, 1985). According to TST, the rate for an event to happen follows an
Arrhenius expression

�T ST
α→β = ν∗ exp

(
−�Gα→β

kBT

)
(1)

where ν∗ is a pre-exponential factor, �Gα→β the activation free energy for the
event that takes the system from state α to state β, kB the Boltzmann constant,
and T the temperature. This model relies on several assumptions: (i) the adiabatic
approximation (Born-Oppenheimer) holds; (ii) the dynamics of the nuclei can be
described with the classical equations of motion; (iii) the configuration at the initial
minimum is at equilibrium, i.e., the system follows a Boltzmann distribution; and
(iv) recrossing events at the transition state are negligible. The TST rate represents
an upper bound to the true rate, �T ST

α→β > �α→β , and can be adjusted considering
dynamical corrections (Voter and Doll 1984, 1985). In the crystalline systems of
most interest, at intermediate-to-low homologous temperatures, TST is commonly
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approximated considering that the potential energy landscape is mostly harmonic
(Vineyard 1957). In this approach, termed as harmonic TST (HTST), the rate is
obtained through the expression

�HT ST
α→β =

∏3N
k ωα

k∏3N−1
k ωts

k

exp

(
−�Eα→β

kBT

)
(2)

where ωα
k are the normal mode frequencies in the initial minimum configuration

(α), ωts
k are the normal mode frequencies when the system is at the transition

state (ts), and �Eα→β is the activation potential energy for the particular event.
Assuming that HTST holds, the big question is then how to obtain the activation
energies and the vibrational frequencies to calculate the rate for the specific event.
As we shall see in the following, for small defects and defect clusters containing
less than around six individual defects, the most accurate tool that is commonly
used is density functional theory (DFT) (Sholl and Steckel 2009), which considers
electronic degrees of freedom and relies on fewer assumptions than classical
empirical potentials. It is worth noting that free energies can also be computed
within the DFT approach, which sometimes allows for the harmonicity constrain
to be relaxed. Although more accurate, the computational cost constrains the
calculations to fairly small samples and thus the size of the defects to be studied.
The activation energy might depend on both the migration energy and a binding
energy of the defect to a microstructural feature. For larger defects, the calculation
of the rates usually relies on empirical potential approaches, such that interactions
between defects are minimized and accurate parameters are obtained.

In this chapter we first review the theory behind the kinetic Monte Carlo
algorithm to then particularize into the object-like KMC methods. Subsequently,
we review the density functional theory approach and the calculations that can be
done to obtain the mechanisms and the rates for such events to finally give some
examples of OKMC simulations of microstructure evolution under irradiation.

2 Formulation and Mathematical Aspects of the Kinetic
Monte Carlo Algorithm

The KMC algorithm gives one realization of the Markovian master equation. In this
section we will review the definition and derivation of the master equation and its
relation to the KMC method.

2.1 The Master Equation

2.1.1 Markov Processes
A Markov process (Kampen 1992) is a stochastic process with the property that the
outcome of one step depends only on the outcome of the previous step. Formally,
this can be written for n successive measurements as
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P(xn, tn|x1, t1; · · · ; xn−1, tn−1) = P(xn, tn|xn−1, tn−1) (3)

That is, the conditional probability density P to find the system in a state defined
by xn at time tn, given by the value xn−1 at tn−1, is uniquely determined and is not
affected by any knowledge of the values at earlier times. P is called the transition
probability, and xn and tn are two stochastic variables representing the measure and
the time of the process.

A Markov process is fully determined by the two functions P(x1, t1) and
P(x2, t2|x1, t1); the whole process can be constructed from them. For instance,
taking t1 < t2 < t3

P(x1, t1; x2, t2; x3, t3) = P(x1, t1; x2, t2)P (x3, t3|x1, t1; x2, t2)

= P(x1, t1)P (x2, t2|x1, t1)P (x3, t3|x2, t2) (4)

Continuing with this logic, one finds successively all Pn. This property makes
Markov processes manageable, which is the reason why they are so useful in
applications.

Integrating Eq. 4 over x2 and dividing by P(x1, t1), one obtains for t1 < t2 < t3

P(x3, t3|x1, t1) =
∫

P(x3, t3|x2, t2)P (x2, t2|x1, t1)dx2 (5)

This is the Chapman-Kolmogorov equation. It is an identity which must be obeyed
by the transition probability of any Markov process. The time ordering is essential:
t2 lies between t1 and t3. Two important remarks are as follows:

1. Two different Markov processes can describe the same physical system, depend-
ing on the level of coarseness of the description.

2. A Markov process is not restricted to one-component processes. For any
r-component stochastic process, one may ignore a number of components, and
the remaining s components again constitute a stochastic process. But, if the
r-component process is Markovian, the process formed by the s < r components
in general is not. Vice versa, if a certain physically given process is not
Markovian, it is sometimes possible by introducing additional components, to
embed it in a Markov process. These additional components serve to describe
explicitly information that otherwise would be contained implicitly in the past
values of the variables.

As a matter of fact, in general, any closed isolated physical system can be described
as a Markov process introducing all microscopic variables as components of the
process. The key problem is to find a small set of variables which evolution can be
described as a multicomponent Markov process. This reduction to a smaller number
of variables is called “contraction” or “projection” (Kampen 1992).
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2.1.2 Derivation of the Master Equation
Consider a Markov process in which the transition probabilities only depend on the
time difference τ = t2 − t1 such that P(x2, t2|x1, t1) = Tτ (x2|x1). The Chapman-
Kolmogorov Eq. 5 for Tτ is a functional relation, which is not easy to handle in
actual applications. The master equation is a more convenient version of the same
equation: it is a differential equation obtained by going to the limit of vanishing
time difference τ . It can be shown (Kampen 1992) that Tτ (x2|x1) for small τ has
the form

Tτ (x2|x1) = (1 − a0τ)δ(x2 − x1) + τW(x2|x1) + O(τ ) (6)

Here W(x2|x1) is the transition probability per unit time from x1 to x2, and hence

W(x2|x1) ≥ 0 (7)

The coefficient (1 − a0τ) in front of the delta function is the probability that no
transition takes place during τ ; hence

a0(x1) =
∫

W(x2|x1)dx2 (8)

The Chapman-Kolmogorov Eq. 5 can be written as

Tτ+τ ′(x3|x1) = [1 − a0(x3)τ
′]Tτ (x3|x1) + τ ′

∫
W(x3|x2)Tτ (x2|x1)dx2 (9)

Dividing by τ ′, go to the limit τ ′ → 0, and use Eq. 8

∂

∂τ
Tτ (x3|x1) =

∫
{W(x3|x2)Tτ (x2|x1) − W(x2|x3)Tτ (x3|x1)}dx2 (10)

which is a differential form of the Chapman-Kolmogorov equation, known as the
master equation. For a discrete Markov chain with index n, this equation reduces to

∂P (x, t)

∂t
=

∫
{W(x|x′)P (x′, t) − W(x′|x)P (x, t)}dx′ (11)

If the range of X = (x1; x2; · · · ; xn) is a discrete set of states, the equation
reduces to

∂pn(t)

∂t
=

∑
n

{Wnn′pn′(t) − Wn′npn(t)} (12)

which represents a rate equation (gain-loss equation) for the probabilities of the
separate states n. The first term is the gain of state n due to transitions from other
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states n′, and the second term is the loss due to transitions from n into other states.
Remember that Wnn′ ≥ 0 when n �= n′ and that the term with n = n′ does not
contribute to the sum (Kampen 1992).

Equation 12 can be written in a more compact form when the following matrix
W is defined

Wnn′ = Wnn′ − δnn′

(∑
n′′

Wn′′n

)
(13)

Then Eq. 12 can be written

ṗn(t) =
∑
n′

Wnn′pn′(t) (14)

Formally the solution of Eq. 14 with given initial pn(0) may be written

pn(t) = exp{t · Wnn′ }pn(0) (15)

Wnn′ needs to follow

Wnn′ ≥ 0 for n �= n’; (16)∑
n

Wnn′ = 0 for each n’. (17)

Equation 16 shows the fact that the probability of staying in state n′ is simply
1 minus the probability of escaping. For a complete reference on the properties of
these matrices, see, e.g., Kampen (1992).

A fundamental property of the master equation is that as t → ∞, all solutions
tend to the stationary solution. This statement is strictly true only for a finite number
of discrete states. For an infinite number of states, there are exceptions, such as the
random walk.

3 The Kinetic Monte Carlo Algorithm

In any particular case, the master equation is fairly easy to write; however, solving
it is quite another matter. The number of problems for which the master equation
can be solved analytically is very limited. In addition, the master equation does
not readily lend itself to numerical solutions due to the number and nature of its
independent variables.

In 1976 Daniel T. Gillespie published his seminal paper A General Method for
Numerically Simulating Stochastic Time Evolution of Coupled Chemical Reactions
(Gillespie 1976). In this work, Gillespie developed the main theory behind what
is nowadays known as the kinetic Monte Carlo algorithm. We will follow his
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derivation here since it is concise and very clear. In Gillespie’s words: “The method
is a systematic, computer-oriented procedure in which rigorously derived Monte
Carlo techniques are employed to numerically simulate the very Markov process
that the Master Equation describes analytically.” That is, the method circumvents
the need to solve analytically or numerically the master equation and gives what is
usually called “one realization of the master equation” since one dynamic trajectory
in phase space is obtained from it. If many trajectories are simulated, the obtained
probability distribution complies with the master equation, and thus, in essence,
the algorithm is a method to numerically solve the master equation that we have
described in previous sections.

Gillespie developed this method to study chemical reactions. In general, the
method is applicable to every process that can be modeled with the master equation,
and hence, the constraints imposed to its derivation apply to the problems that can
be solved with this algorithm; mainly, the process has to be Markovian (remember
that every deterministic process is Markovian) and first order in time.

We want to solve the dynamic evolution of a system characterized by a set of
states in phase space α, β, γ, etc. As mentioned above, it is the researcher’s task to
define phase space so to comply with the necessary constraints and, therefore, to be
able to solve the problem at hand using the kinetic Monte Carlo methodology. The
fundamental hypothesis of the stochastic formulation, and the only assumption to be
made by the computational method, is that the probability that a particular transition
occurs in the next time interval δt is equal to cμνδt + o(δt), where o(δt) denotes
unspecified terms which satisfy o(δt)/δt → 0 as δt → 0. Therefore

cμνδt ≡average probability, to first order in δt,

that a particular transition (μ → ν) occurs. (18)

We want to solve the probability for the system to be in state μ at time t,∀t , and
P(μ; t), knowing the initial probability distribution and the transition probabilities
per unit time cμν . It is worth mentioning that the master equation can be derived
from Eq. 18 by using the addition and multiplication laws of probability theory to
write P(μ; t+dt) as the sum of the probabilities of the different ways for the system
to arrive at state μ at time t + dt :

P(μ, t + dt) = P(μ, t)

[
1 −

M∑
μ

cμνdt

]
+

M∑
ν

cνμP (ν; t)dt (19)

and therefore

∂P (μ, t)

∂t
=

M∑
ν

cνμP (ν; t) −
M∑
μ

cμνP (μ, t) (20)

which is the master equation, with M as the total number of states.
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The principal theoretical construct upon which the procedure is based is not the
grand probability function P(μ, t), nor any of its derived quantities, but rather an
entity which is called the reaction probability density function, P(τ, μν), which is
defined as

P(τ, μν)dτ ≡probability at time t that the next transition

in volume V will occur in the differential

time interval (t + τ, t + τ + dτ)

and will be transition μ → ν. (21)

P(τ, μν) is a joint probability density function on the space of the continuous
variable τ(0 ≤ τ < ∞) and the discrete variable μν(μν = α → β, α →
γ, . . . , β → α, . . .). This joint probability is the product of P0(τ ), the probability at
time t that no transition will occur in the time interval (t, t + τ ), times cμνdτ , and
the subsequent probability that transition μ → ν will occur in the next differential
time interval (t + τ, t + τ + dτ ):

P(τ, μν)dτ = P0(τ ) · cμνdτ (22)

Note that we need not worry about more than one reaction occurring in (t + τ, t +
τ + dτ ), since the probability for this to happen is o(dτ). P0(τ ) can be obtained if
the interval (t, t + τ) is divided into K subintervals of equal length ε = τ/K . The
probability if nothing happened in the first subinterval ε is

M∏
μν

[
1 − cμνε + o(ε)

] = 1 −
M∑
μν

cμνε + o(ε) (23)

For the whole interval, we can then write

P0(τ ) =
[

1 −
M∑
μν

cμνε + o(ε)

]K

=
[

1 −
M∑
μν

cμντ/K + o(K−1)

]K

(24)

In the limit of infinitely large K

P0(τ ) = exp

[
−

M∑
μν

cμντ

]
(25)

Substituting in Eq. 22, we obtain

P(τ, μν) = cμν exp

[
−

M∑
μν

cμντ

]
(26)
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The main goal of the KMC algorithm is to generate random points in phase
space according to such probability density function. Three main methods have been
developed to do so: (i) the direct method, (ii) the first reaction method (also called
the first passage method), and (iii) the null event method.

3.1 The Direct Method

This method is based on the fact that any two-variable probability density function
can be written as the product of two one-variable probability density functions. As
such we can write P(τ, μν) as

P(τ, μν) = P1(τ ) · P2(μν|τ) (27)

where P1(τ )dτ is the probability that the next reaction takes place within the
interval [t + τ, t + τ + dτ ], independent of which reaction it might be. P2(μν|τ) is
the conditional probability that next event is μν given that it occurs at time t + τ .
P1(τ )dτ is obtained summing P(τ, μν)dτ over all possible events μν:

P1(τ ) =
M∑
μν

P (τ, μν) (28)

Substituting this expression into Eq. 27 and solving for P2(μν|τ)

P2(μν|τ) = P(τ, μν)∑M
μν P (τ, μν)

(29)

Substituting now the expression for P(τ, μν) given in Eq. 26 and defining
R = ∑M

μν cμν , we obtain

P1(τ ) = R exp (−Rτ) (0 ≤ τ < ∞), (30)

P2(μν|τ) = cμν

R
(μν = 1, 2, . . . , M), (31)

and we can now generate a random τ according to P1(τ ) and a random cμν from
P2(μν|τ) with the resulting pair (τ, cμν) distributed according to P(τ, μν). τ can
be obtained drawing a uniformly distributed random number (ξ1) in the interval
[0, 1) from the expression

τ = 1

R
ln

1

ξ1
(32)
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while cμν can be obtained drawing a second random number (ξ1) again uniformly
distributed in [0, 1) and taking the event that satisfies

m−1∑
μν

cμν < ξ2 ≤
m∑
μν

cμν (33)

3.2 The First Reaction Method

This method is based on the fact that the probability that at time t the event μν

occurs in the interval (t + τ, t + τ + dτ) irrespectively of all other possible events
is given by

Pμν(τ)dτ = exp
(−cμντ

) · cμνdτ (34)

Therefore, independent times for each event might be drawn from such probabil-
ity distribution using the same expression as before:

τμν = 1

cμν

ln
1

ξμν

(35)

where ξμν is a random number to be drawn uniformly for each possible event. The
actual next event is the one with the shortest time. This scheme generates a pair
(μν, τ ) that complies with the P(τ, μν) probability density function. Because the
amount of random number needed is much larger than in the previous method, this
algorithm is usually less efficient. However, recent implementations take advantage
of spatial decompositions to accelerate the wall time for the system to evolve in time
(Opplestrup et al. 2006).

3.3 The Null Event Method

algorithm is based on the introduction of a new type of event, usually denoted as
a null event, which if chosen keeps the microstructure in its original state. This
extra event can be added to each individual event such that all events have the same
total rate (Gilmer and Bennema 1972) or can be added to a cumulative rate of a set
of events (Hanusse and Blanche 1981). It can be shown that this algorithm solves
the same master equation as the previous two methods and therefore can be used to
study the microstructural evolution, that is, the algorithm follows the right dynamics.
The advantage of this method is that the searching wall time to find the event is
reduced considerably, even to zero, i.e., the CPU time scales as O(1). However,
the simulated time step decreases, since it is sampled from the same probability
distribution with the extra rates due to the null events, τ = 1

Rnull
ln 1

ξ1
, with Rnull the

aggregate of all rates. This implies that the best computational efficiency will occur
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Direct Method First Reaction Method Null Event Method

cαβ

cαγ

cαδ

cωδ

..
.

..
.

t1 t2 t3 tn cαβ

cαγ cαδ
cωδ

..
.

c'αβ

c'αγ c'αδ

c'ωδ

Fig. 1 Sampling approaches

for a minimum in the total null event rate (Chatterjee and Vlachos 2007). If the
searching step in the direct method represents a large bottleneck in computational
speed and the system is not significantly stiff (i.e., the total null event rate is not
daunting), this algorithm can outperform the direct method.

Figure 1 shows schematics of the three sampling methods described above.

4 Searching and Updating Algorithms

Provided the rates are trivially calculated or are tabulated in advance, sampling
Eq. 33 can represent the main computational bottleneck in KMC simulations. In
general, the calculation of the rates is far from trivial, and several algorithms have
been recently developed to calculate more accurately rates on-the-fly within a KMC
scheme. This set of methods are usually denoted as adaptive KMC algorithms
(Henkelman and Jonsson 2001; El-Mellouhi et al. 2008; Xu and Henkelman 2008).
However, these methods are computationally demanding, and the total simulated
time and the sample size remain limited. On the other hand, they are usually able
(like MD or AMD) of obtaining the reaction mechanism without extra assumptions.
In the context of irradiation to analyze the long-term microstructural evolution of the
system under irradiation, the rates for the different events are usually pre-computed,
and under these conditions, it is important to identify the possible different searching
and updating algorithms that reduce the wall time in sampling Eq. 33 and updating
the rates and its aggregate.

4.1 Linear Search

The linear search is the simplest algorithm to implement. It uses an array or list of
possible events with an assigned rate that visits linearly, i.e., one by one in the list,



100 DFT-Parameterized Object Kinetic Monte Carlo Simulations of . . . 2469

to calculate the cumulative rate, until Eq. 33 is satisfied. This method scales linearly
with the number of events, i.e., O(N) with N the total number of events. Grouping
can be used to improve the efficiency in what has been denoted as n-level linear
algorithms. In this case a set of events are grouped together and the cumulative
rate computed in as many levels as wanted. Each search goes in general through a
number of events that is Nn ≈ N1/n, with n the level of grouping. The wall time
of this algorithms scales then as nO(Nn), which can be considerably faster than the
brute force linear search.

4.2 Binary Search

Binary searches rely on the generation of a tree data structure containing information
about the rates (Gibson et al. 2000; Schulze 2002) to reduce the CPU time
required to sample Eq. 33. In this structure, each node represents a cumulative
propensity of the branches below it, such that the bottom nodes represent individual
propensities for specific events. The number of levels in a tree will be at least
Nlevel = f loor(log2(N)). If this is the case, the tree is considered equilibrated,
and the computational efficiency is maximum. The algorithm starts at the head
node that contains the cumulative rate of the left branch. If the target rate is
lower, the next search is performed in the children to the left of the head
node, to the right otherwise. This process is repeated until the bottom of the
tree is reached and the event identified. In this algorithm the CPU time scales
as O(log2(N)); however, the pre-factor to keep the tree equilibrated might be
significant, and, not in every situation, this algorithm is faster than the linear
searches.

4.3 Constant Time Search

The main idea of this method is based on the null event (or rejection) algorithm,
in which the need for searching is reduced to drawing an integer random number
from a uniform distribution between [1, N], with N the total number of possible
events, which will directly point at the event to be performed, including a null
event. A second random number must be generated to pick between the actual
or the null events. The search does not depend on the number of events, N , and
therefore scales as O(1). In a stiff problem with significantly different rates, a
grouping algorithm can be developed to minimize the amount of null events. This
will resemble a combination between the n-level search with the extra addition of
the null events. In this case the search would be O(Nn), with Nn the number of
groups. This null event (or padding) method could also be combined with a binary
search to keep the tree balanced. A review of this method can be found in Slepoy
et al. (2008).

Figure 2 shows a summary of the searching algorithms discussed above.
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Fig. 2 Searching algorithms

5 Object Kinetic Monte Carlo Methods

The object kinetic Monte Carlo (OKMC) method uses a coarse-grained repre-
sentation of the system to accelerate the wall time required to analyze its time
evolution. In the context of materials under irradiation, the method averages out
the underlying atomic structure to consider as possible event processes involving
defects. Therefore, the algorithm follows the irradiation-created defects in time,
solving for their migration and the interaction with one another and other kinds
of features in the microstructure, such as grain boundaries, dislocations, alloying
elements, or such. As it was mentioned in Sect. 1, TST is usually assumed to
calculate the rates for each possible event, although, in general, experimental results
or MD simulations can be also used to obtain such propensities, including dynamical
corrections. The method results in a defect distribution evolving in time for a
given initial microstructure (may be containing defect sinks such as interfaces
or dislocations) under a given set of irradiation conditions, such as dose rate,
temperature, pressure, and information about the nature of the defects created in
the collision processes.

6 Density Functional Theory to Calculate Propensities

Density functional theory (DFT) is a mean field approach to solve the many-body
Schrodinger equation (Hohenberg and Kohn 1964). It is based on the fact that the
ground-state properties of a many-electron system are uniquely determined by an
electron density that depends on only three spatial coordinates. As such, the many-
body problem of M electrons with 3M spatial degrees of freedom is reduced to
three spatial coordinates through the use of functionals of the electron density. DFT
assumes that the electron dynamics are much faster than the nuclei and solves
the ground-state electronic structure for a fixed positions of the nuclei, i.e., the
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Born-Oppenheimer approximation is assumed to hold. Hohenberg and Kohn (1964)
developed an energy functional for the system and demonstrated that the true ground
state of such energy functional minimizes the functional. Subsequently, Kohn and
Sham (1965) were able to reduce the many-body problem of interacting electrons in
a static external potential to a solvable problem of noninteracting electrons evolving
in an effective potential. The correctness of these methods mainly relies on the
accuracy of this effective potential. This effective potential includes the external
potential and the Coulomb interactions between electrons, with contributions from
the exchange and correlation interactions. The simplest approach is the local-
density approximation (LDA) that relies on the exact exchange energy for a uniform
electron gas as given by the Thomas-Fermi model (Ceperley et al. 1980). More
complex functionals for exchange and correlation have been developed and still
are a very active field of research. One widely used example is the generalized
gradient approximation (GGA) that incorporates information about the gradient of
the electron density in the functionals to account for the non-homogeneity of the
real electron density (Langreth and Mehl 1983; Becke 1988; Perdew et al. 1992).
Hybrid functionals incorporating a portion of the exact exchange energy calculated
from Hartree-Fock theory with the rest of exchange correlation from other sources
are also extensively used. The problem of finding the ground-state electron density
is variational and has to be solved iteratively in a self-consistent manner such that
the effective potential and the wave functions are also obtained for such electron
density.

DFT is widely used in chemistry and materials science to understand and
predict the properties of complex systems under specific conditions. Although
computationally more efficient than all-electron approaches, the solution of the DFT
equations presents a computational bottleneck, which translates into limited system
sizes and simulated times. In general, the computational scaling of this method is
O(n3) with n the number of electrons since usually the diagonalization of the system
Hamiltonian scales as n3. The development of O(n) methods is also a remarkably
active research area (Niklasson et al. 2006; Witt et al. 2018).

In the context of materials under irradiation, this approach has been broadly used
to estimate the properties of defects. Although usually calculated at 0 K, there
have been some studies using ab initio MD to compute the required properties
(Grabowski et al. 2007; Körmann et al. 2008; Grabowski et al. 2011; Glensk et al.
2015) at higher temperature. One of such properties is the defect formation energy.
This is usually calculated as

Efor(D) = E [Nat + D] − (Nat + D)μ (36)

where D represents the defect, Nat is the number of atoms in the bulk system, and
μ is the cohesive energy of the material. This formation energy might be used to
estimate the equilibrium defect populations.

Another important quantity is the migration energy (Em(D)), which is defined
as the difference of the energy of the system at the saddle point and the initial state
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for a defect hopping. To compute this migration energy, the system is forced to
converge to the minimum energy path (MEP) between the initial and final states. If
the initial and final states are known, methods like the drag method (Trushin 2005)
or the nudged elastic band (NEB) (Henkelman and Jonsson 2000; Henkelman et al.
2000) are commonly used. If the final state is unknown a priori, the dimer method
(Henkelman and Jonsson 1999) or the Lanczos method (El-Mellouhi et al. 2008) are
usually preferred. Recently, advanced methods have been developed to improve the
predictions obtained with the traditional methods, such as free-end NEB (Zhu et al.
2007) or free-end adaptive NEB (Zhang et al. 2016). This Em(D) will be used in
the HTST expression (Eq. 2) to compute the migration rate. The pre-factor is usually
assumed constant and close to the Debye frequency of the material. However, under
certain conditions, it has been shown that the explicit calculation of the pre-factor
might significantly change the event rate. One of such conditions arises when the
system is under nonuniform strain, in which case the pre-factor can change by orders
of magnitude (Uberuaga et al. 2007). Vineyard pre-exponential factors can also be
calculated within DFT, although the computational expense is high.

Binding energies are also crucial for the method to be predictive. The binding
energy characterizes the interaction between two or more species in the system.
It is defined as the energy gain in a given reactions that can be exothermic or
endothermic:

Eb
X−Y (A) = E[S + X + Y ] + E[S] − (E[S + X] + E[S + Y ]) (37)

where Eb
X−Y (A) denotes the binding energy of species X and Y in system S, E[S +

X+Y ] is the energy of the system with the interacting species, E[S] is the reference
system, and E[S + X] and E[S + Y ] are the reference systems with specie X and
Y , respectively. Important binding energies are, for example, from single defects to
clusters, between defects and impurities or alloying elements, and between defects
and sinks (such as grain boundaries or dislocations). This binding energy enters
in the activation energy for a dissociation process, altering the propensity for such
reaction to occur. Expressions derived from elasticity theory are commonly used to
fit the values obtained from DFT and extrapolate for larger cluster sizes (Perini et al.
1984).

The interaction radius is also an important parameter needed in the OKMC
method. In general, it depends on the species and its size. Usually, empirical
relations based on DFT data are used. For defect clusters, a common expression

is rn = Z ·
(

3n�
4π

)1/3 + r0, where Z is a bias factor depending on the nature of the

defect, n is the number of single defects in the cluster, � is the atomic volume, and
r0 is a constant usually obtained with DFT.

DFT has also been used to obtain threshold displacement energies in materials of
interest, i.e., the minimum energy that needs to be given to an atom such that a stable
Frenkel pair is formed. This approach has been employed to study the energetic
threshold depending on the orientation in materials such as α-Fe (Olsson et al. 2016)
and W (De Backer et al. 2016).
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7 Examples

In this section we will show a couple of examples in which this method has been
applied to analyze the evolution of the microstructure under irradiation. The first one
is for ferritic/martensitic steels, which is of great importance in nuclear applications.
The second example studies the defect evolution in tungsten (W) and the interaction
of the irradiation-created defects with He created from (n, α) nuclear reactions and
the incoming flux from the plasma ashes.

7.1 Microstructural Evolution in α-Fe Under Irradiation

Irradiation of a metal and subsequent annealing while measuring electrical resis-
tivity can provide important information about basic processes related to defect
migration and defect stability, data that can be calculated with DFT or other atomic-
scale models as mentioned in the previous section. C. C. Fu et al. (2005) using event
kinetic Monte Carlo with parameters from DFT simulated the resistivity recovery
curve of Fe after electron irradiation and correlated these results to the different
peaks observed in experiments performed by Takaki et al. (1983). Figure 3 shows
the derivative of the number of defects (N) as a function of temperature obtained
in this case with OKMC and the same parameters as in Fu et al. (2005) for a dose
of 2 × 10−6dpa (dpa = displacements per atom). The locations of the peaks found
experimentally in Takaki et al. (1983) are marked in the same figure with arrows.
These simulations show that the first peak (named stage ID2) appears because of
the recombination of correlated Frenkel pairs. In this case the vacancy and self-
interstitial belong to the same Frenkel pair in such a way that with one single
self-interstitial jump, these defects recombine. Recombination of defects gives rise
to a decrease in the resistivity of the material and therefore a peak in the derivative
of the curve. The second stage, named IE, also corresponds to the recombination
between vacancies and self-interstitials but for pairs of defects that are far away
from each other, so more than one jump of the self-interstitial must occur for the
defects to recombine. This peak appears at a temperature that corresponds to that of
self-interstitial migration. The next stage, stage II, is due to the migration of self-
interstitial clusters, while stage III is due to vacancy migration.

In the case of an alloy, if the concentration is low, the alloying element can be
treated explicitly in the OKMC approach by treating every alloy atom as a defect.
As mentioned above, in the OKMC approach, there is no underlying lattice, so,
in principle, these atoms will be distributed randomly within the simulation cell.
All the possible events that these atoms can perform, interaction with vacancies
or self-interstitials, formation of clusters, or migration must be specified with
their appropriate rates. For the case of FeCr alloys, there is information obtained
from DFT on small clusters (Olsson et al. 2007; Olsson 2009). One important
defect formed in FeCr alloys is the mixed interstitial dumbbell, which has a lower
migration energy than the self-interstitial cluster, but also a low binding energy
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Fig. 3 Derivative of the number of defects as a function of temperature for electron irradiation of
Fe at a dose of 2 × 10−6dpa from OKMC calculations and parameters from Fu et al. (2005)

(Domain et al. 2004). Experimentally, it is observed that in low-concentration alloys
(between 0.01 and 0.1% Cr), the IE peak in the resistivity recovery measurements
shifts toward lower temperatures and the shift increases with Cr concentration (Abe
and Kuramoto 1999; Maury et al. 1987). Using an OKMC model with parameters
from DFT as described in Gámez et al. (2011) that include the formation of mixed
dumbbells (ICr) as well as other Cr clusters (I2Cr, ICr2, and I2Cr2), the shift
was reproduced as it can be seen in Fig. 4. This figure shows the results for pure
Fe and for FeCr at the three concentrations measured experimentally in Abe and
Kuramoto (1999), 0.019 at%, 0.047 at%, and 0.095 at%), and how the IE peak
moves toward lower temperatures with increasing Cr concentration in agreement
with the experiments. The reason behind this shift is in fact the formation of the ICr
mixed dumbbell.

One of the advantages of the OKMC approach is that system sizes larger than
those in lattice KMC (LKMC) models can be simulated, typically cubes of hundreds
of nanometers on each direction. This allows for calculations of damage accumu-
lation as a function of irradiation to doses that can be achieved experimentally and
to model the formation of clusters large enough to be visible under transmission
electron microscopy (TEM). An example of these types of simulations that have
been performed by several groups for different conditions, starting with the work of
Heinisch (1990) (see, e.g., Domain et al. 2004; Malerba et al. 2008; Becquart and
Domain 2010), is presented here. In this case, the accumulation of damage during
continuous irradiation of Fe and Cu is simulated. Details of these calculations are
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Fig. 4 Derivative of the
number of defects as a
function of temperature for
electron irradiation of pure Fe
and FeCr alloys of three
different concentrations
following the experimental
work of Abe and Kuramoto
(1999) obtained from OKMC
and parameters from DFT
(see Gámez et al. (2011) for
details)

in Caturla et al. (2000). In brief, a database of collision cascades in Cu and Fe
for 30 keV recoils obtained from molecular dynamics simulations is used as initial
damage distribution. This picosecond time damage is very different in Fe and in Cu.
Cu presents mostly clustered vacancies with surrounding self-interstitial clusters,
while in Fe most of the vacancies are isolated or forming very small clusters. The
values of migration energies and binding energies of defects used in the calculations
were obtained from empirical potentials. Figure 5 shows the total concentration of
visible clusters as a function of dose for the case of the two materials studied, Cu
and Fe. Here, the visibility conditions were considered as follows: 20 defects for
vacancies in Cu, equivalent to a stacking fault tetrahedra of 1.5 nm, 350 vacancies
for a 1 nm void in Fe, and 50 self-interstitials for a 1 nm loop in Fe. This figure
shows that there is an important difference in the damage accumulated in Fe vs.
Cu, phenomenon also observed experimentally (Dai et al. 1997). The reason for
this difference is related both to the initial damage distribution and the effect of
impurities in these two materials. In Cu, where no impurities are considered in
the simulation, most self-interstitials and self-interstitial clusters disappear through
recombination with vacancies or at grain boundaries, and most of the damage is
vacancy clusters, with an average size of about 28 vacancies which corresponds
with a 2 nm stacking fault, in agreement with experimental observations (Zinkle
and Farrell 1989). In Fe, self-interstitials are trapped by impurities, which result in
visible clusters, while vacancies are too small to be observed under TEM (with less
than 15 defects). In Fe most of the evolution of the clusters and growth to sizes
that can be observed experimentally is going to occur through defect diffusion and
defect coalescence. And the description of these interactions depends on the set of
reactions that the user of the OKMC model has decided to consider as the important
ones.
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Fig. 5 Visible defect clusters as a function of irradiation dose for the case of Fe and Cu (see
Caturla et al. 2000 for details)

7.2 Microstructural Evolution in W Under Fusion Conditions

Critical components in magnetic fusion reactors are required to have stringent prop-
erties including low neutron activation, high melting point, good thermomechanical
properties, low sputter erosion, and low tritium retention/co-deposition. Tungsten
(W) is the leading plasma-facing material (PFM) candidate due to its high melting
temperature, low erosion rates, and small tritium retention. These advantages are
unfortunately coupled with very low fracture toughness characterized by brittle
transgranular and intergranular failure regimes, which severely restrict the useful
operating temperature window and also create a range of fabrication difficulties.
Exposure to He and H plasma leads to the formation of diverse microstructures
(pits, holes, bubbles, nanostructured surface morphology termed as fuzz) (Baldwin
and Doerner 2008) that severely limit its utilization. Therefore, understanding the
mechanisms leading to the W failure is crucial to develop materials to be able to
withstand the extreme environments posed by fusion energy generation.

DFT has been broadly used to obtain the data mentioned above and needed
by the OKMC to evolve the microstructure. Using different DFT approaches, the
formation energies of intrinsic defects have been calculated. The single vacancy (V)
values in the literature range from ∼3.1 to ∼3.7 eV (Söderlind et al. 2000; Becquart
and Domain 2007; Suzudo et al. 2014), while for self-interstitial atoms (SIA), the
values depend on the configuration. Some discrepancy arises in the literature about
the most stable configuration, with similar values for the 〈111〉 dumbbell, 〈111〉
crowdion, and a slightly rotated configuration, with values around ∼9.6–9.7 eV
(Nguyen-Manh and Dudarev 2006; Suzudo et al. 2014) and ∼10.41 (Becquart and
Domain 2007) depending on the approach. Binding energies of individual defects
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Fig. 6 Binding energies of
individual defects to their
clusters for (a) vacancies, (b)
self-interstitial atoms, and (c)
He atoms (Becquart and
Domain 2010)

to defect clusters are also required. Becquart et al. calculated the ones for vacancies
and interstitials using their DFT approach and use a capillary law for large defect
clusters (>8 V for vacancy clusters and >7 SIA for interstitial clusters). Figure 6a
and 6b shows the results for vacancies and self-interstitials, respectively. We observe
that the capillary approximation fits well the ab initio data. One of the puzzling
results in W is that the binding energy of two individual vacancies is repulsive, i.e.,
vacancies do not want to aggregate.

The migration energies for the intrinsic defects and their clusters are also needed.
For individual defects, several sources are available in the literature (Becquart
and Domain 2010; Suzudo et al. 2014; Huang et al. 2016), all describing single
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vacancies with a large migration energy (∼1.7 eV), while SIAs show a remarkably
small migration barrier (∼0.005–0.056) eV. Becquart et al. (2010) proposed an
expression for the diffusion constant of defect clusters. In the case of vacancy
clusters, the attempt frequency is given by ν = ν0(q

−1)n−1, with ν0 = 6 × 1012 s−1

constant and equal for V and SIA, q = 1000, and n the number of individual defects
in the cluster. Based on this model, Castin et al. (2017) have recently proposed an
extension to account for the effect of grain boundaries and carbon impurities. The
authors presented a sensitivity analysis of the parameters that mostly influence the
onset of void swelling using their in-house OKMC code called MATEO concluding
that the presence of carbon impurities in the W matrix strongly influences the
kinetics of void formation due to the strong binding interaction between carbon
and vacancies. They also showed the importance of correlated recombination after
cascade events in the microstructure evolution. Mason et al. (2014) used a different
parametrization of formation and migration of clusters to study loop accumulation
and their interactions in a W thin film. In this case, they explicitly added elastic
interactions between defects to analyze the evolution of collision cascades and
compare the effect of impurity trapping and elastic trapping concluding that elastic
loop trapping within a cascade can stabilize large loops at high temperatures, while
they shrink at low temperatures. On the other hand, small loops glide to the surface
at high temperature, hence accounting for the experimentally observed reduction in
total loop density and the change in the loop size distribution (Fig. 7).

As mentioned above, the study of the effect of He and H is paramount to
understand the response of W to plasma exposures and neutron irradiations. OKMC
has also been used to study the evolution of W in the presence of these two light
elements. For this end, parameterizations of the behavior of these elements and
their interactions among them and with V and SIA have been developed. Becquart
et al. (2010) used their parametrization to study the isochronal annealing of He
desorption in W and compared the results to experimental observations, employing
the LAKIMOKA OKMC code (Domain et al. 2004). Subsequently, they studied
the microstructural evolution of W under irradiation accounting for He production.
They observe that the OKMC model reproduces satisfactorily the microstructure
formed in the track region by 800 3He implantation for different fluence conditions
(see Fig. 8).

The influence of grain boundaries on the microstructure evolution accounting for
He has also been studied within an OKMC model. Extending the parametrization
of Becquart et al. (Becquart and Domain 2009; Becquart et al. 2010), Valles et al.
(2015a, b) studied the retention of He in the sample depending on the density of
grain boundaries under pulsed He irradiation. They observe that around 50% of the
incoming ions were retained at the interfaces in nanocrystalline W, while in the
case of larger grains, that number dropped to around 30%, which indicates a strong
dependence of He retention with grain boundary configurations. They also conclude
that in the nanocrystalline W, mixed HenVm clusters contain more vacancies with a
lower He/V ratio.

Valles et al. (2017a) have also studied the influence of H atoms in the defect
evolution under irradiation and the effect of grain boundaries in the sample. They
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Fig. 8 (a) Vacancy concentration at the end of the implantation sequence for different fluences:
a comparison of the experimental data with the SRIM, MARLOWE, or OKMC models. The black
line is a linear fit (in the logarithmic scale) of the OKMC results. (b) The amount of desorption,
annihilation, and clustering versus fluence at the end of the implantation stage as calculated by
OKMC (Becquart et al. 2011)

extended the energetics for small clusters available in the literature (Henriksson
et al. 2005; Fernandez et al. 2015; Lu et al. 2014; Ohsawa et al. 2010) to
parametrize the H-V interactions using DFT calculations and considered H-SIA
clusters as immobile. It is important to note that the H-H interaction is repulsive
and, therefore, pure H clusters will not occur. However, in the presence of defects,
the situation is different, with a strong binding between vacancies and H atoms. The
authors conducted OKMC simulations using the MMonCa code (Martin-Bragado
et al. 2013) and concluded that grain boundaries have a clear influence on the
number density and distribution of vacancies, observing a larger concentration
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in the nanocrystalline sample compared to a single-crystal sample. Also, they
observed that H retention is highly influenced by both grain boundaries and
vacancy concentration, the size of HnVm clusters varies slightly with the presence
of grain boundaries, and grain boundaries act as fast diffusion pathways for H.
Other KMC models on the same system reached similar conclusions (Oda et al.
2015).

Impurities, such as carbon and oxygen, or alloying elements or transmutation
products will also influence the long-term damage evolution in W. DFT calculations
have shown that both vacancies and He atoms strongly interact with solute atoms.
Carbon and oxygen have also been found to be able to trap He atoms, increasing
its retention in the material and the probability of forming bubbles. Self-interstitial
atoms also interact with solute atoms and impurities (Suzudo et al. 2014; Gharaee
et al. 2016; Huang et al. 2017, 2018). Some of these extra atoms modify the relative
stability of SIA configurations, which in turn modifies the transport properties and
the flux coupling between the defects and the solute elements. Very recently, Castin
et al. (2018) have developed an OKMC model based on DFT calculations to study
the role of carbon impurities in defect evolutions and also the presence of rhenium
upon neutron irradiation, which also impacts the diffusivity of defects and therefore
the microstructure evolution. Their model compares well with experiments in terms
of both density of loops and voids.

Another material problem where the OKMC has been extensively applied was
the analysis of the formation of a nanostructured surface morphology termed as
fuzz appearing in W exposed to He plasma under conditions relevant for energy
generation. The increased surface area and fragility of these nanostructured surfaces
raise new concerns for the use of W as a fusion reactor PFM, particularly as a
source of high-Z dust that will contaminate the plasma. Lasa et al. (2014) developed
a model considering the He atoms and the bubbles as the objects in the system.
He atoms are mobile but bubbles are not. Bubbles are considered to blast at
a threshold distance from the surface that depends on the bubble radius. They
concluded that the square root of time dependence of the growth rate is due to
the He bubble growth and not to He diffusivity. The surface above the bubbles
grows as interstitial loops are emitted from the bubbles with a preferential direction
toward the surface. Bubble rupture near the surface will create roughness as seen in
the experiments. Even though the model does not consider elastic interactions, nor
surface diffusion or W knockout adatom formation, it reproduces the experimentally
found growth dependence on time, which suggests that those mechanisms might
not be crucial to explain fuzz formation. Building on this model, refining the
parametrization, Valles et al. (2017b) studied the effect of temperature on fuzz
growth. The authors identified the reason for fuzz formation as the formation of
large HenVm clusters, which are only stable at intermediate temperatures (900–
1900 K). At low temperatures (700 K), fuzz growth is prevented by the stability
of small He9V1 clusters, hindering He emission. In contrast, at high temperatures
(2500 K), fuzz does not grow due to the high He emission from HenVm clusters,
leading to their dissolution and, thus, preventing He retention.



2482 E. Martínez et al.

8 Limitations of the Method

The main limitation of the method is the fact that all possible mechanisms
characterizing viable events have to be identified a priori and taken as input for the
OKMC simulations. However, it is oftentimes the case that unforeseen mechanisms
occur as the system evolves in time. One simple example often given in the
literature is the adatom diffusion on a {100} free surface in fcc metals, which
was long misunderstood until Feibelman showed that the exchange mechanism
could be energetically favorable compared to direct migration (Feibelman 1990).
Recent examples include the computational observation using MD that stacking
fault tetrahedra (characteristic irradiation-created defects in fcc metals) might
indeed migrate with diffusivities depending on their atomic structure, contrary
to the commonly accepted assumption that described these defects as immobile
(Martinez and Uberuaga 2015). It was shown that their mobility can significantly
impact the long-term behavior of the system, precisely relying on an OKMC
model as implemented in the code MMonCa (Martin-Bragado et al. 2013). Another
interesting example is the understanding that small He clusters might indeed diffuse
in a W matrix as Frenkel pairs are created and the self-interstitial annihilates
with a different vacancy to the originally created, leading to net translation of the
cluster. Using a cluster dynamics model as implemented in the code Xolotl (Xu
et al. 2012), it was shown that the incorporation of this mechanism in the viable
events significantly modifies the amount of He retained in the W wall and the
bubble distribution. As the microstructure becomes more complex, the probability
of finding new mechanisms increases, which might significantly modify the long-
term evolution of the system (Uberuaga et al. 2018). Therefore, much attention
needs to be given to understanding the atomistic processes occurring in the systems
of interest under irradiation and their characterization with accurate rates for the
OKMC calculations to be predictive.

It is also commonly assumed that the rates for the possible events are independent
of the current configuration, i.e., there is no long-range interaction between defects
that might modify their diffusivities. There are studies in the literature mitigating
this limitation (Hudson et al. 2005; Wen et al. 2009; Subramanian et al. 2013;
Mason et al. 2014). A common approach is to use a linear approximation in which
the dipolar tensor of the defect is used to compute a variation of the energy at the
saddle point and at the initial state due to elastic interactions (among defects and also
between irradiation-created defects and pre-existing dislocations/grain boundaries
(Vattré et al. 2016)). These modifications in the rates due to elastic interactions
have been shown to modify the microstructural evolution of the system. A similar
situation is encountered in the case of charged defects, in which long-range
Coulomb interactions might be considered to bias defect diffusivities (Martin-
Bragado et al. 2006). Although these long-range effects might be significant,
they are not commonly considered based on computational arguments. Usually
this problem scales as O(N2), with N the number of species, which reduces the
efficiency of the algorithm and the attainable simulated time. This bottleneck could
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be in part mitigated relying on fast multipole methods, which reduce the algorithmic
complexity to O(N) (Arsenlis et al. 2007), albeit with a large pre-factor, or Fourier
transform methods (n log(n)), with n the number of grid points (Hunter et al. 2011;
Bertin et al. 2015), to accelerate the computation of the interactions.

In principle the method should be able to handle alloying elements and impurities
provided that the whole parametrization is known. In practice this represents
another challenge in terms of computation since the number of events can increase
considerably. Also, the definition of local concentration and its relation with a
certain cluster is unclear for non-dilute alloys. In this scenario, it is also important
to consider the possibility of defect trapping, i.e., the presence of superbasins in
which defects might flicker between nearby positions without much addition to
the simulated time, reducing considerably the efficiency of the algorithm. Several
methods have been proposed to alleviate this drawback that can indeed significantly
increase the efficiency in such situations (Novotny 1995; Fichthorn and Lin 2013;
Athènes and Bulatov 2014).

In common conditions in nuclear environments, the amount of irradiation-created
defects per unit time and volume is considerable and increases with time until it
reaches steady state (if attainable). Tracking all these defects in an efficient manner
is a challenge. Parallel algorithms to take advantage of parallel architectures have
been recently developed with the goal of improving both simulated time and system
size (Shim and Amar 2005a, b; Martínez et al. 2008, 2011). Implementation on GPU
architectures has also been considered with the same goal and showed promising
results (Jiménez and Ortiz 2016).

9 Conclusions

We have reviewed in this chapter the kinetic Monte Carlo (KMC) methodology
describing in detail the theory behind this powerful and flexible approach and how
it can be used to study the microstructure evolution of systems under irradiation.
The KMC approach described here is called object KMC (OKMC), which coarse-
grains out the atomic structure to focus on elements (or objects) of interest,
such as irradiation-created defects, impurities, transmutation or alloying elements,
etc. These objects evolve in time according to prescribed rules characterized by
probabilities per unit time (or rates), which enter in the OKMC algorithm to follow
the system evolution. It is commonly assumed that the rates follow transition state
theory, which relates activation free energies and attempt frequencies with such
rates. We have seen how these parameters can be accurately calculated using density
functional theory, which explicitly accounts for the electronic degrees of freedom.
Although computationally expensive, which limits system size and total simulated
time if dynamics are required, its accuracy, superior to that of empirical interatomic
potentials makes it the method of choice to obtain the required values for single
defects and small defect clusters, along with their interactions with impurities and
alloying elements. We have shown two examples in which the evolution of the
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system under irradiation has been studied using this methodology: ferritic steels and
tungsten. In both systems we show that the results in terms of defect distributions
can be satisfactorily compared to experimental observations. Finally, we have
reviewed the limitations of the methodology and how current research approaches
are tackling those limitations.
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