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Fractal-TRIDYN (F-TRIDYN)

F-TRIDYN is a BCA code for ion-solid interactions

Reflection
Sputtering | F-TRIDYN includes surface morphology:
» Fractal surface morphology
» Statistical surface morphology

Morphology

Computationally efficient model for:
» Reflection
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Motivation: BCA for Coupling

Binary Collision Approximation (BCA) codes handle atomic timescale (ps-fs) and lengthscale
(A-nm) ion-solid interactions

Significantly faster than Molecular Dynamics for ion-solid interactions

Dynamic materials have too many free parameters to capture using empirical or analytical
formulas

Physics captured using binary nuclear collisions and a formula for electronic stopping
BCA codes have been verified for many systems for decades
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Results: Sputtering Yield Curves with Fractal Surface Model
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Yield curves usable as rough surface response model
Not feasible if there are many dynamic parameters
Surface roughness shifts maximum yield to the right
Little experimental sputtering yield data at low energies
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PSI-SciIDAC 2 Project: Multiscale Modeling
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Code Coupling: Applications
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Theory: Surface Roughness Models

Fractal surface model Statistical surface model

« Surface modeled as explicit fractal surface Surface modeled as distribution of heights
» Fractal Dimension as roughness parameter RMS roughness as roughness parameter
o Scale parameter also needed « Standard measure of surface roughness

« Surfaces created using fractal generators Fast check of particle positions (~10s)

* Requires additional scaling parameter » Up to 50X faster than explicit surface

» Slow check of particle positions (~100s) Implicit structure only

e Full capture of complex morphology No spatial correlation captured

» Algorithm extendible to any 2D surface
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Theory: Normally Distributed Surface Heights

Assume normally distributed surface heights Logistic approximation to erf() for whole domain
. _ . L _ Minimizing total square error leads to a=1.70/c*

Probability of a given position being inside the surface is o o _ _

given by the error function Logistic function is invertible and analytic

Not a CDF, but a Probability Mass Function (PMF) L1 o x 1

Same functional form as CDF for normal distribution /= 2 2 ( 26 ) g= 1 + exp(-ax)
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Theory: Link Between Fractal & Statistical Models

Statistical Modeling of Fractals™
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Initial Results: Sputtering Yields with Statistical Surface Model

Fractal Model™ Single Gaussian surface model only captures low-roughness
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Modeling: Further Statistical Modeling of Complex Surfaces

_Fractal Height Distribution Statistical Height Distribution, N=3

Multi-Gaussian estimation

PMF now sum of kernels

normalized Probability

ol j /\ /\ Opens up possibility of directly
PR = . " Y modeling surface morphology

R from AFM measurements or
other atomic scale imaging
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Conclusions

« A statistical model of surface roughness has been
Included in F-TRIDYN for ion-solid interactions

 Reduces surface roughness problem to a single
parameter, the RMS roughness

e Approximate statistical structure of complex surface
morphologies reproducible via kernel density
estimation of surface height distributions
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Future Work

* Pursuit of direct comparison to experiment using KDE
technigue to reproduce statistical properties of complex
surface morphologies

* Investigation into possible additions or improvements to
the BCA model of ion-solid interactions

* Improved code-coupling behavior for multi-scale
modeling
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