Modeling of Fuzz Formation on Helium-Ion-Irradiated Tungsten Surfaces

Dwaipayan Dasgupta, Robert Kolasinski, Dimitrios Maroudas, and Brian Wirth

(1) University of Tennessee, Knoxville
(2) Sandia National Laboratories, Livermore
(3) University of Massachusetts, Amherst

59th Annual Meeting of the APS Division of Plasma Physics, Milwaukee, WI
October 26, 2017

Financial Support:
This work was supported by the DOE-OFES and SciDAC through Advanced Computing project on Plasma-Surface Interactions under Award No. DE-SC0008875, and partially supported by OFES Award DE-SC0006661.

The experimental work was supported by the DOE-OFES, through the Materials and Fusion Nuclear Science and Early Career Research programs.
Motivation: Fusion Materials

- Plasma facing materials (PFMs): Tungsten
 - Low hydrogen solubility, low sputtering yield, high melting point, and high thermal conductivity
 - He irradiation modifies near surface microstructure: Increase in retention of tritium, fuzz-like nanostructure
 - Divertor of ITER: Nucleation of bubbles, retention of hydrogen isotopes, and production of high-Z dust
- ‘Fuzz’: Temperature (1000-2300K), He energy (∼10eV), and He flux

State of Knowledge in the Field

- Bubble density in nanobubble layer and bubble diameter depend on the surface temperature and fluence
- The bubbles grow via trap mutation reaction. Bubbles are favorable to grow for bubble concentration ~10^{-40}/ W
- Surface diffusion, loop punching, and bubble bursting leads to pinholes, dips, and protrusion formation on the surface
- Subsurface bubble growth further propagates the surface morphological evolution; the edge becomes sharper and the dip becomes deeper in this process.

State of Knowledge in the Field

- Large scale MD simulations: Successfully predicted subsurface He bubble dynamics but maximum timescale captured so far is $O(10^3\text{ns})$ while onset of fuzz-formation happens $O(10^3\text{s})$. For a typical MD run time on ANL Mira ($O(2 \times 10^7 \text{atoms})$ simulation on $O(2 \times 10^4 \text{cores})$), to reach onset of fuzz formation requires $O(300 \text{ Million years})$ wallclock time. [K. D. Hammond et al., Fusion Sci. Technol. 71(1), 7-21 (2017).]

- KMC simulations†: KMC extended the MD results from ns-Å to s-μm scale, but unable to reach the experimental hr-mm range.

- MD and MC hybrid simulations: Semi-2D MD and MC hybrid simulations have captured the fuzz formation.

Continuum domain model is based on following assumptions:

- Nanobubble region is a homogeneous layer of spherical bubbles with uniform size and number density;
- Nanobubble region is under constant stress due to overpressurized bubble;
- Subsurface bubble dynamics is not included in the current model.

Model parameterization relies on material and thermophysical properties obtained through either atomic-scale simulations or experimental results available in the literature [Ref: K. D. Hammond et al., Acta Materialia (Article in press); S. E. Donnelly, Radiat. Eff. 90, 1-47(1985)]
Model

- Continuity equation:
 \[
 \partial_t h = \frac{H'\delta_s}{k_B T} \nabla_s \cdot J_s + \Omega J_I - \Omega J_{sp}
 \]

- Surface mass flux \((J_s)\):
 \[
 J_s = \Omega D_s \nabla_s (-\gamma / \kappa + \epsilon)
 \]

- Young-Laplace equation for overpressurized bubble
- Average microscopic stress:
 \[
 \bar{\sigma}_b = \left(p - \frac{2\gamma'}{r_b} \right) \frac{A_b}{1 - A_b}
 \]

- Sputtering loss \((J_{sp})\):
 \[
 J_{sp} = \Gamma_{He} Y_{sp}
 \]
 \[
 Y_{sp} = Y_\infty \left[1 - d_E \left(\frac{\beta}{\alpha} \right)^2 \kappa \right]
 \]

- Interstitial mass flux \((J_I)\):
- Thermodynamic driving force:
 \[
 -\nabla_z \mu' = -\frac{\Delta \mu'}{\Delta z} = -\frac{\mu - \mu_I}{0 - (-l_D)}
 \]
- Mass-flux:
 \[
 J_I = \frac{D_IC_{I,0}}{k_B T h_0} \left[\Omega \gamma / \kappa - \Omega \epsilon \right] + \text{const.}
 \]
Results: Benchmarked against Experiments

- **Experiment:** A medium-flux RF plasma source (2.7×10^{20} He m^{-2} s^{-1}) was used to expose ITER-grade W specimens to ion fluences ranging between 5×10^{23} – 1.2×10^{25} He m^{-2} (corresponding to exposure times ranging between 30 min. to 12 hrs.). For each test, the sample temperature (840 °C) and incident ion energy (75 eV) were identical.

- **Simulation:** The W surface morphology was perturbed with small amplitude normal wave random perturbations (with an rms value, 10^{-4}, much lower than polished W surface). The sample temperature and incident ion energy were identical with experiments. Helium retention was assumed to be ~1%.
Results: Benchmarked against Experiments

Expt: $t = 30$ min

Sim: $t = 60$ min

Expt: $t = 80$ min

Sim: $t = 80$ min

f (μm$^{-1}$) vs. height (nm)

- Expt: $t = 30$ min
- Sim: $t = 60$ min
- Expt: $t = 80$ min
- Sim: $t = 80$ min
Results: Benchmarked against Experiments

- Helium concentration reaches saturation level with negative exponential growth (approximately in 1500 s)
- Bubble bursting/pinhole formation appears to play an important in surface morphological evolution

Summary & Future Work

- An atomistically-informed, continuous-domain model is developed to describe the initial stages of surface deformation, leading to fuzz formation in helium-ion-irradiated tungsten and the simulation results are benchmarked against experimental studies.

- A spectral collocation method and discrete fast Fourier transforms are used to compute spatial profile of the field-variables (curvature, stress, etc.). For time stepping, an operator splitting-based semi-implicit spectral method with adaptive time step size is used to carry out self-consistent dynamical simulations. For a typical simulation run time on HPC ($O(1 \mu m \times 1 \mu m)$ surface) simulation on single core), to reach onset of fuzz formation requires $O(10 \text{ hours})$ wallclock time.

- Continuum domain model can qualitatively capture nanotendril formation at high temperature; the model predicts the growth rate of nanotendrils reasonably well and nanotendril widths are quantitatively comparable (~ 200 nm) with those observed in experimental studies.

- Subsurface bubble dynamics and bubble bursting, redeposition of sputtered W, etc. soon to be included in the model.

- Model will be benchmarked against measurements from carefully designed experiments at different temperature and gas implantation conditions.