PSI2 SciDAC — Integrating Codes to Model Plasma Surface Interactions: focus on Plasma Sheath Effects and Sputtering Near Surfaces

D. Curreli(a), J. Droby(b), A. Lasa(b), T. Younkin(b), S. Blondel(b), M. Clanciosa(c), W. Elwasif(c), D. Green(c), L. Owen(c), J. Canik(b), P. Roth(b), D. Bernhold(b), B. Wirth(b), and the PSI2-SciDAC team
(a) University of Illinois at Urbana Champaign, (b) University of Tennessee Knoxville, (c) Oak Ridge National Laboratory

SciDAC-4 Principal Investigator (PI) Meeting
Rockville, MD, July 23-24, 2018

https://collab.cels.anl.gov/display/PSIscidac2/Plasma+Surface+Interactions+2

Work supported by the US DOE as part of the SciDAC project on Plasma-Surface Interactions-2

hPIC - Plasma Sheath

- Plasma Sheath: establishes the link between "Edge" and "Wall".
- UUC's full-F full-orbit plasma sheath code hPIC is used to analyze the near-surface ion kinetics.
- hPIC accurately captures finite-orbits effects near to the wall, which are responsible for the generation of the magnetic presheath in oblique magnetic fields.
- hPIC produces ion Energy-Angle Distributions (IEAD) at the wall for plasma modes of multiple ion species.
- IEADs are a necessary input to surface models (Fractal-TRIDYN & XOLOTL) and to the global impurity transport model (GITR).
- hPIC accepts inputs from plasma edge codes (SOLPS, XGC, etc.) and produces outputs which can be easily coupled to Material Codes.

** GITR - Impurity Transport**

- **ITER Geometry for GITR Simulation**
- **ITER Outer Diverter Target (Graded W Melt)**
- **XOLOTL - Material Evolution**

F-TRIDYN - Ion/Matter Interaction

- Surface Sputtering: the mechanism driving particle exchange between the plasma edge and wall.
- **F-TRIDYN** is a Monte Carlo, Binary Collision Approximation code that handles atomic-scale ion-material interactions including reflection, implantation, damage, and sputtering.
- Surface morphology is modeled in F-TRIDYN, which has a significant effect on ion-material interactions.
- F-TRIDYN produces depth profiles of implanted plasma species and energy-angle distributions of reflected plasma and sputtered target species.
- Accurate implantation profiles are necessary to model material evolution with XOLOTL.
- Sputtered target particles are the primary source of impurities tracked by GITR.

FTRIDYN Simulations of Tungsten Self-Sputtering and Applications to Coupling Plasma and Material Codes

J. Droby, A. Hayes, D. Curreli, D. N. Ruzic, M. Cianciosa, B. Wirth

XOLOTL

- **XOLOTL - Material Evolution**
- Diffusion/Adsorption Reaction model of cluster dynamics.
- Model simulates the helium cluster evolution (cluster concentration, cluster size) and predicts quantities such as the percentage of implanted ions that is retained below the surface, fuel retention, etc.
- The code captures retention oscillations as a function of time due to bubble bursting at the surface (fig below).
- XOLOTL has been coupled to F-TRIDYN through the IPS framework (trace view below).

https://github.com/ORNL-Fusion/xolotl