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The Long Standing Fission Gas Problem

| Fission reactions |

| Generation of fission gases (Xe, Kr) |
¥
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* G. Pastore (INL) — micographs from White, Corcoran and Barnes, Report
R&T /NG/EXT/REP/02060/02 (2006).
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The Long Standing Fission Gas Problem

Fission gas located in:
- Mobile gas atoms
- Intra-granular bubbles

- Inter-granular bubbles

Gas release driven by inter-granular
bubble interconnection:

- Creation
- Diffusion
- Absorption
- Re-solution

Effective Diffusion Rate:
D' =Db /(b +g)
* D. Andersson (LANL)

COSIRES. June 18. 2018

Intra-granular

Le @
O 2 ad
< 0
Inter-granular
Release to
plenum
\ -
-
-

3333K 2500K 2000K 1667K 1429K 1250K
Pt L L L L L

> Calc.. no irradiation MARMOT
o Calc.. imadiation MARMOT
o Cale., MD-lowT
4 This work
Exp.. intrinsic diffusion
— Exp.. imadiation enhanced
Exp.. athermal

3 4 5 6 7 8
T a0*k™



The Challenge of Plasma-Surface Interactions

Plasma facing components must remove plasma exhaust, which
involves unprecedented power and particle fluxes and fluences, while
limiting release of impurities to the core plasma.

ITER Plasma Material Interface

'SSueS' ITER Plasma Core
) 1
- Erosion lifetime and plasma compatibility ll"

- Tritium inventory
- H/He blistering

Plasma Boundary

Plasma Heat &
Particle Fluxes.

il
Divertor Target

Tungsten is a good material candidate due to its high
resistance to heat.

Upstream
Hot Plasma Channel
Downstream

Divertor %

= We want to be able to predict the material evolution.

10 MW/m? max on target

e

o

* B. D. Wirth (UTK/ORNL)
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Plasma-Surface Interactions Objective
Develop PSI simulation capability across three coupled spatial regions:

Ao Laggor s - o,

» Edge/scrape-off-layer region of the plasma, with sheath
effects (mm above the surface)

(RS
Pre-Sheal Magnelic Sheah  Surace

» Near surface material response to plasma exhaust, with
neutron damage and with influence of /coupling to
plasma sheath (102 — 103 nm under the surface)

» Structural material response to intense, 14 MeV-peaked
neutron spectrum (1073 — 10> mm under the surface)

55ps |

SIA (green) : e SIA clusters form in
Vac (black) - subcascades
interconnect region

* B. D. Wirth (UTK/ORNL)
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Multiscale Approach
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The Material Model

The tungsten material is represented by the concentration of clusters at each
spatial grid point:

- Interstitials: atoms of tungsten that are no longer on a lattice site

- Vacancies: missing atoms of tungsten on a lattice site

- Helium: helium atoms that are irradiated

- Mixed: combination of helium atoms trapped in tungsten vacancies

sputtering co-deposition
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Reaction-Diffusion Equations

5:C=¢-p—VJ—Q0)

» ¢ - p is the incoming flux, the helium distribution profile is obtained from
SRIM or MD simulations

» J=—DVC + uC is the Fickian diffusive and drift fluxes, with D; following

the Arrhenius equation
D; = Dy e Er/keT

with Dy ; and E,, obtained from MD and DFT simulations
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Reaction-Diffusion Equations

» Q(C) is the reaction term:

Production: Dissociation:
A+B—E F—G+H
dCay dCp dCe dC dC dC
A IEF TP kT CaAC F G _ H _ -
dt dt dt ABEATE = T T T ar - KewCr
ki g =4m(ra+ rg)(Da+ Dg) 1 =

- + T
ken= ﬁkG,He 5

- the capture radii r; and the atomic volume Q are calculated from geometric
considerations and lattice parameter ag

- the binding energy E, associated to the dissociation is computed from the
formation energies Ef given by MD and DFT simulations
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Xolotl

» Xolotl is the Aztec god of death and lightning
» Developed from scratch using C++ and MPI

> The solver part (using PETSc) is independent of the
physics part and it uses the finite difference approach

2y
L

il
M"‘

» A preprocessor creates the default options and
kinetics needed to run Xolotl

» 2D/3D has been implemented

» Open source code available at
https://github.com/0ORNL-Fusion/xolotl
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Large—Scale MD Simulations (at a fluence of ~ 4 - 10" He m™?)
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Near Surface Helium Behavior .
Molecular Dynamics and Molecular
Statics simulations have generated
parameters of mobile helium clusters for
different surface orientations:
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D. Maroudas et al., Helium segregation on surfaces of plasma-exposed tungsten, J. Phys. Condens. Matter,
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Mobility of Small HeV Complexes
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D. Perez et al., The mobility of small vacancy/helium complexes in tungsten and its impact on retention in
fusion-relevant conditions, Sci. Rep. 7, 2522 (2017)
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Bubble Bursting: How Does It Work?

At the end of each time step loop on all
the grid points:

- compute the total quantity of helium atoms

Surface (nHe) present at this grid point
N - compute the radius of the helium bubble, using
w Ligament Ny = nie/4 and
P (3 V3 3\
S HexV, = I'v o o
. _Bubble

- compute the ligament thickness (L = d — r)
- burst if the ligament thickness is 0, or with
probability proportional to the thickness
Pourst o (1 — L/d) x f x min(1, e~ (47 7@)/270)
When bursting,
- the concentration of each HeV cluster is transfered to the same size V cluster

- He clusters are just set to 0.0
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Bubble Bursting: Comparison to MD Simulation
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Flux: 5-10%” He m~2 s ! at 933 K.
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Grain Boundaries

Grain boundaries act as sinks for mobile helium clusters like the free surface.
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Hammond et al., Helium impurity transport on grain boundaries: Enhanced or inhibited?, Europhysics Letter
110, 52002 (2015)
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Grain BOU ndaries: Helium Concentration at 2 - 10*° He m2 s !
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Implantation in Tungsten, Fusion Science and Technology 71, 1 84-92 (2017)
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Code Integration in Fusion

MATERIALS’ EVOLUTION

N

experimental FTriDyn
values for the GITR Imol .
background plasma Impurity migration mp ?;:ffg'on Xolotl
o T. He f and re-deposition P
(Nex To, ux...) - Material
composition

Xolotl is part of a multi-physics code integration effort using the
Intergrated Plasma Simulation framework.

Scripts are automatically generated to have the codes exchange data
and loop together.

* A. Lasa (UTK)
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Application to PISCES Dedicated Experiments

Linear plasma device with biased target (250 V) to enhance erosion, flux of

5.4 -10%2 He m—2 s~ ! for 100 s, surface temperature of 1093 K.
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Fission Gas Application
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Preliminary comparison to experimental
results: we overestimate the bubble
radius.

= Need to add a re-solution model
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Generated a database of Xe bubbles
re-solving into smaller Xe clusters by the
passage of a fission fragment through
MD simulations.

We are currently developing a simplified
model to include in Xolotl.

Thermal spike energy transfer to the lattice, keV/nm
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MARMOT uses phase field coupled with large deformation solid mechanics and
heat conduction to predict the coevolution of microstructure and properties in
nuclear materials.

’—> Gas atom flux at GBs —l

Xolotl MARMOT

* Models intragranular bubble * Models intergranular bubble
behavior behavior

* Includes vacancy and gas atom « Evolves grain structure
production and resolution « Computes gas atom release from

» Computes flux of gas atoms to grain edges

grain boundaries

Tf Grain boundary locations 4—/

Coupling will be managed by the multi-app system in MOOSE

The codes will each converge separately and then pass information

* M. Tonks (UFL)
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Code Development

- Grouping: Use of a moment method to gather neighboring clusters together,
average and first moments are then tracked:

C'=Ly+ Y ldpLhe + dpLl]

n,mei

- Optimization: Involvement with computer scientists to improve the
performances, recent work was incorporated in PETSc
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Dynamic Solver: Work on having an extending cluster network with time.
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Benchmarks against other simulations proved successful

Strong involvements with computer scientists to have a
performant and reliable code

Currently coupling Xolotl with other physics codes to reach
experimental timescales

Thank You!

This work is supported by the US DOE under the Scientific Discovery through Advanced Computing program.

COSIRES. June 18. 2018 24



COSIRES. June 18. 2018

Back-Up

25



Attenuation

The effect of the modified trap-mutation in MD simulations seems to be

attenuated with higher fluence.

The parameters obtained from
small scale MD simulations are
computed with no pre-existing
helium concentration near the
surface and their strengths are
weakened when the layer of
helium start building up.

= Attenuate these parameters in Xolotl too:

krm = e e X kry
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Different physical processes contribute to the surface evolution under
irradiation.

Trap mutation and loop punching: When the bubble grows

Hea + Heb Vc — Hea+b Vc+d + Id

These self-interstials can then move to the surface and create
adatoms (increase height).

Sputtering: Tungsten atoms are ejected by incoming energetic
particles (decrease height).

Re-deposition: These tungsten atoms can then travel back to

the material after ionization in the plasma sheath (increase
height).
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Surface Evolution in Xolotl

Void Tungsten

» No reaction, diffusion, or anything on the void grid points, concentrations are
forced to 0.0

» On the tungsten side, classic ADR equations

» Count the number of interstitials diffusing from the is 4+ 1 grid point to the is
grid point to account for adatoms from trap mutation

» Remove the number of sputtered atoms given by the sputtering yield (given
by FTriDyn)

» Profile of implanted interstitial for re-deposition is given by FTriDyn with
energetics from GITR
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Surface Evolution in Xolotl

» When the interstitial flux at the surface reaches a given threshold
(corresponding to the tungsten density), move the surface

Void Tungsten

0

==
b
L
L
L
L
[ |
L

» Re-initialize all the processes that are depth dependent (helium
and re-deposition flux profiles, near-surface advection,
near-surface trap mutation, ...)

» The surface can move up or down, by one or many grid points per
time step
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In Xolotl the grouping method for now is a moment scheme:

Normal clusters that are neighbors are grouped in a super cluster
(fOI’ instance Hej3_16Vi316 = HeiasVias )

Only the concentration of the super cluster is tracked (instead of
the many normal clusters that compose it) taking

C'=Lo+ > ldhlpe + dply]

n,mei

There are 3 equations for each super cluster (L, L., L)
Modelling Simul. Mater. Sci. Eng. 25 (2017) 015008

30
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Extend the network and update the grouping with time:

Start with small network (100He x 100V/)

When the edge clusters have a concentration higher than a
threshold times the total concentration, stop the solver

Copy the solution, create a new network X times larger, define
new bounds for the grouping (function of previous moments),
start the solver from the new solution

Loop until we are happy
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Helium Cluster Size
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