


Simulating a linear device is a step towards
modeling ITER Tungsten components  PiscEs target and tower

® Physics models to be evaluated with linear

machine dedicated experiments:
o Net erosion of materials exposed to He plasma.
o lonization and volumetric transport of impurities through

the background plasma.
o Redistribution of the eroded material.
® GITRis a componentin a larger integrated

simulation
o High performance computing component for the

impurity particle push.
o  Provided background plasma profiles, sheath model,

surface model.
o Traces particles through plasma and surface operators.
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GITR Uses Trace Impurity Model for Particle Track

Classical velocity change moments Thermal gradient

SimUIation (Fokker-Planck) force correction
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Lorentz Force

mg

_ _ ,\ Collisional Terms
Ax = vxAt+ /D, At - e}

nlmpurity << nBackground

Anomalous perp. diffusion

® Plus operators for ionization and recombination,
multiple charge states, connected to ADAS.

e Particles hitting a material surface undergo operations to weight
and re-sample the particle according to the process.
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Sputtering Model Comes from Fractal-TRIDYN

Output
e Fractal-TRIDYN is a BCA code that simulates Sputtering yield parameterization
a rough surface according to fractal . T rom FTRIDYN (1)
dimension. §

100 ¢

e Data for sputtering as a function of energy,
angle, and surface roughness are compiled
before GITR runs.

e \With support of UIUC and the ATOM
SciDAC, F-TRIDYN has been run in parallel | | | |
on 5 nodes at NERSC making use of all ° ey
processors.

107 ¢

> 102

103

10 ¢

T. Younkin, APS-DPP October 2017



PISCES-A He on tungsten experimental setup is

designed to measure impurity migration

® PISCES-A experiment exposes a tungsten target plate biased to -250 Volts to a
helium plasma at an approximate flux of ~10%2 m?2s™ at temperatures of 400

to 600°C.
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PISCES-A plasma profile measurements used as
GITR input

e 800 Gauss magnetic field perpendicular to W target minimizes sheath effects.
® Profiles with + and - 20% of Te and ne values were also used to investigate
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Spatial distribution of impurity source is known,

but angular distribution is not
e Radial flux profiles were used to sample spatial distribution of He eroded W
from the target.
e A variety of angular distributions were used to investigate sensitivity.
e Thompson energy distribution used with Es =11.75 eV.
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A scan in several parameters will display the
sensitivity of the model
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Results for low flux exposure (10,000S) .. .o s canormiastous sesc

¢ Experiment

161 [ Jaitr 1
—e=— GITR flat axial profiles exaggerated butterfly

e Mass loss of target plate is near experimental values.

e Mass gain of collector beads is accurate with slight
overprediction far from the target plate.

e Shape of line emission curve shows fair agreement with
considerable sensitivity to scanned parameters.
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Results for high flux exposure (5,000s) - secunorrum o ses

¢ Experiment
[ JGITR
—=— GITR flat axial profiles exaggerated butterfly

&)

»

e Higher percentages of prompt redeposition compared to low
flux case.

e Mass gain of bead collectors agrees well with experimentally =,!
measured values.
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GITR Performance And Numbers

® GITR running on single node of a GPU development machine - 2
NVidia Tesla K80s.

e 28,000 triangular face boundary elements.

® The hashing algorithm removes the simulation run time
dependence on the number of mesh elements used to represent
the material surface.

e 10’ particles per run
e dt=1e-8sfor 10,000 steps

® runtimeis ™ 66 seconds
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Conclusions and future work

e GITR trace impurity model predictions of W erosion, ionization,
and deposition agree well with the three experimental
observables.

® |nitial sensitivity study on variations in sputtered W angular
distributions as well as background plasma temperature and
density provide a prediction band reasonably consistent with
experimental error bars.

e More formal uncertainty quantification planned for future.

e He/D mixed plasma experiments are planned for PISCES.

® Reuvisit calculations with improved coupling to assess Fractal
TRIDYN input for the sputtered W energy and angle distributions.
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