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Plasma-Material Interactions can cause a wide range of
plasma and material degrading effects

« 1stand 4t state of matter do not peacefully co-exist

* Their interaction compromises both material and plasma performance
— Erosion, heat loads, n-irradiation... reduce PFC lifetime, increase retention
— Sputtering + inward migration = core contamination, impurity accumulation
— Impurity co- and re-deposition - Underperforming mixed materials, enhanced fuel retention
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PSI processes involve multiple physics that extend over
orders of magnitude in time and length scales
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Multi-physics description is nheeded to capture the wide

range of processes occurring in PSI

* We aim to model - long term evolution,

— surfaces exposed to steady-state plasmas,
— Incl. erosion & sub-surface driven changes
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Code integration allows to incorporate multi-physics
models needed to describe PSI
* We integrate high fidelity codes targeting multiple physics

— edge plasma, sheath, impurity transport, irradiation effects, surface thermodynamics...

to model different scenarios
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Code integration allows to incorporate multi-physics
models needed to describe PSI

* We integrate high fidelity codes targeting multiple physics

— edge plasma, sheath, impurity transport, irradiation effects, surface thermodynamics...

to model different scenarios

 Linear devices experiments of W exposed to
I.  Pure (He) plasma
ii.  Mixed (D-He) plasma

* The ITER W divertor (across several tiles) exposed to
lii. Pure (He) plasma
iv. Mixed (D-T-He) plasma ‘.'
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Code integration allows to incorporate multi-physics
models needed to describe PSI

* We integrate high fidelity codes targeting multiple physics

— edge plasma, sheath, impurity transport, irradiation effects, surface thermodynamics...

to model different scenarios

 Linear devices experiments of W exposed to

| i.  Pure (He) plasma | Focus of the
i. Mixed (D-He) plasma current example

* The ITER W divertor (across several tiles) exposed to
lii. Pure (He) plasma
iv. Mixed (D-T-He) plasma ‘
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Dedicated experiments exposing W targets to He plasma
have been performed in PISCES
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We use the IPS framework to integrate plasma edge and
materials modeling codes

* [t's a HPC interface, supported by the ATOM SciDAC

« Sequentially run codes, file-based integration
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We use the IPS framework to integrate plasma edge and
materials modeling codes

* [t's a HPC interface, supported by the ATOM SciDAC

« Sequentially run codes, file-based integration
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We use the IPS framework to integrate plasma edge and
materials modeling codes

* [t's a HPC interface, supported by the ATOM SciDAC

« Sequentially run codes, file-based integration

EDGE PLASMA IMPURITY MIGRATION MATERIAL's MODELING

1Y 1Y 113

Ne, Te, ... Ne, sheath... Composition,
@ Imp. Flux, outgas...

Outgas Ein, Ain... Ein, Ain, flux ...
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PLASMA STATE Ein, Ain,
Eout, Aout...

Outgas, surf. composition... Implantation profile, Ysp...
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A simplified code integration strategy is sufficient for
modeling the PISCES experiment

* Linear machine

— Only the material evolves (plasma in steady state)=> ‘one-way’ coupling

experimental
values for the
background plasma

(ng, T, He flux...)

Multi-phys. modeling of plasma exposed surfaces

A. Lasa et al., APS-DPP, Milwaukee, Oct. 26t 2017

%QA RIDGE

tional Laboratory



A simplified code integration strategy is sufficient for
modeling the PISCES experiment

* Linear machine

— Only the material evolves (plasma in steady state)-> 'one-way’ coupling

- B-field perpendicular to target

— Standard sheath models (no coupling with PIC/sheath code)

experimental
values for the
background plasma

(ng, T, He flux...)

Multi-phys. modeling of plasma exposed surfaces
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A simplified code integration strategy is sufficient for
modeling the PISCES experiment

 Linear machine
— Only the material evolves (plasma in steady state)-> 'one-way’ coupling

- B-field perpendicular to target
— Standard sheath models (no coupling with PIC/sheath code)

MATERIALS’ EVOLUTION
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Material
composition
T. Younkin,
2nd talk this session
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Coupling of materials models is necessary for a complete

description of materials’ evolution
| MATERIALS’ EVOLUTION |
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Flux varies significantly across the surface and is known
to impact fuel retention

* Plasma flux (I') can impact the W sputtering yield (Y,,) and He retention

- We used T, and I, from the PISCES experiment

max

He
PLASMA

Z Yy vV V
PISCES I
< W target R (0000000007

» Expected output

— the radial profile of He retention

— Ysput(r) 2 use average or radial profile of Y,
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He retention is greatly affected by flux and vacancies are
essential to model low fluxes

Evolution of W sputtering yield (by FTridyn)

+ Impact of plasma flux on W Sheghe

sputtering is negligible. : PISCES T PISCEST
0.0015 min max

3( )
He fluence
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He retention is greatly affected by flux and vacancies are
essential to model low fluxes

Evolution of W sputtering yield (by FTridyn)

* Impact of plasma flux on W
sputtering is negligible.

- Large effect on retention

- introduce vacancies to induce He nucleation at low fluxes

He retention, low flux (0.25e4 nm-2s-1) initial trapping by | He retention, high flux (4.0e4 nm-2s-1)
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Including W re-deposition is an intermediate step In
coupling F-Tridyn and Xolotl to GITR

- W re-deposition modeled by GITR 7}, f\ | -
9 Ein7 ain, W fraCtlon T Younkin, an talk g1oooo gmooo r\ %

* F-Tridyn: implantation profile 0 J\L =N |
and YSp for eaCh (Gin, f(Em)) ’ ” Impa:tOAngle [deegrees] % 100 0 e 4°E"nergy [ef/?o 800 1000

J. Drobny, 3 talk

« Xolotl: implant W as interstitials
S. Blondel, 4t talk
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Including W re-deposition is an intermediate step In
coupling F-Tridyn and Xolotl to GITR
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- At first glance, little effect on retention £ L
— Slight increase in surface growth Zhy .
— possibly a cumulative effect ’ . " SAK L
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Need to optimize Xolotl simulations to reach experimental
time-scales

 Longer (exp. time-scale, O(710%s)) simulations are needed to draw
conclusions with confidence

— Cumulative effects will only manifest in long time-scales
— Effect of (initially important) parameters may be dampened over time

« Xolotl has been run for 102-103  S. Blondel, 47 talk

» Optimization options in Xolotl need to be tested
— Currently the maximum time-step (dt.,) used is 10° s
— Need to explore solver options: e.g., increase dt, ., with fluence (cluster size)
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Upcoming code integration steps for modeling more
complex (and relevant) scenarios

* To start simulating some interesting physics

Beyond...

— Couple to GITR

— Run to experimental time-scales = introduce roughness J. Drobny, 3 talk
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Upcoming code integration steps for modeling more
complex (and relevant) scenarios

* To start simulating some interesting physics
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— Couple to GITR 1D runs

— Implement ITER’s geometry, handing mixed (H+He) plasma...

— Run to experimental time-scales = introduce roughness J. Drobny, 3 talk

— Introduce H, bubble bursting, simultaneous runs... in Xolotl s Blondel, 4t taik

— Comparison to experiment T Younkin, 27 talk AR BIR
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Thank you for your attention!

This work is supported by the US DOE
under contract DE-AC05-000R22725

%OAK RIDGE
Multi-phys. modeling of plasma exposed surfaces A. Lasa et al., APS-DPP, Milwaukee, Oct. 26t 2017 National Laboratory



