Multi-physics modeling of the long-term evolution of surfaces exposed to steady-state plasmas

A. Lasa*, D.L. Green, J.M. Canik (ORNL)
T. Younkin, S. Blondel, B.D. Wirth (UTK)
J. Drobny, D. Curreli (UIUC)
M. Baldwin, R. Doerner (UCSD)

APS-DPP, Milwaukee, WI, Oct. 26th 2017

*lasaesquisaa@ornl.gov
Plasma-Material Interactions can cause a wide range of plasma and material degrading effects

- 1st and 4th state of matter do not peacefully co-exist
- Their interaction compromises both material and plasma performance
 - Erosion, heat loads, n-irradiation… reduce PFC lifetime, increase retention
 - Sputtering + inward migration \rightarrow core contamination, impurity accumulation
 - Impurity co- and re-deposition \rightarrow Underperforming mixed materials, enhanced fuel retention
PSI processes involve multiple physics that extend over orders of magnitude in time and length scales.
Multi-physics description is needed to capture the wide range of processes occurring in PSI

- We aim to model
 - long term evolution,
 - surfaces exposed to steady-state plasmas,
 - incl. erosion & sub-surface driven changes
Code integration allows to incorporate multi-physics models needed to describe PSI

- We integrate high fidelity codes targeting multiple physics
 - edge plasma, sheath, impurity transport, irradiation effects, surface thermodynamics…

 to model different scenarios
Code integration allows to incorporate multi-physics models needed to describe PSI

• We integrate high fidelity codes targeting multiple physics
 – edge plasma, sheath, impurity transport, irradiation effects, surface thermodynamics…
 to model different scenarios

• Linear devices experiments of W exposed to
 i. Pure (He) plasma
 ii. Mixed (D-He) plasma

• The ITER W divertor (across several tiles) exposed to
 iii. Pure (He) plasma
 iv. Mixed (D-T-He) plasma
Code integration allows to incorporate multi-physics models needed to describe PSI

- We integrate high fidelity codes targeting multiple physics
 - edge plasma, sheath, impurity transport, irradiation effects, surface thermodynamics…
 to model different scenarios

- Linear devices experiments of W exposed to
 i. Pure (He) plasma
 ii. Mixed (D-He) plasma

- The ITER W divertor (across several tiles) exposed to
 iii. Pure (He) plasma
 iv. Mixed (D-T-He) plasma

Focus of the current example
Dedicated experiments exposing W targets to He plasma have been performed in PISCES

- W target exposed to He plasma
 - Biased target ~ 250V
 - 2 pulses: similar T_e, different n_e
 - Flux $0.25 - 4 \times 10^{22} \text{ m}^{-2}\text{s}^{-1}$
 - t_{pulse} ~ 5000 – 10000 s
 - ‘low’ substrate temp. (no fuzz)
We use the IPS framework to integrate plasma edge and materials modeling codes

• It’s a HPC interface, supported by the ATOM SciDAC
• Sequentially run codes, file-based integration
We use the IPS framework to integrate plasma edge and materials modeling codes

- It’s a HPC interface, supported by the ATOM SciDAC
- Sequentially run codes, file-based integration

COMPONENTS

- EDGE PLASMA
- IMPURITY MIGRATION
- MATERIAL’s MODELING
We use the IPS framework to integrate plasma edge and materials modeling codes

- It’s a HPC interface, supported by the ATOM SciDAC
- Sequentially run codes, file-based integration

![Diagram showing the integration of edge plasma, impurity migration, and material's modeling.

Components
- **Edge Plasma**
 - Ne, Te, ...
 - Outgas

- **Impurity Migration**
 - Ne, sheath...
 - Imp. Flux, Ein, Ain...

- **Material's Modeling**
 - Composition, outgas...
 - Ein, Ain, flux ...

Info flow
- Ne, Te, sheath...
- Outgas, surf. composition...
- Implantaion profile, Ysp...

Driver
- Ne, Te, sheath...
- Ein, Ain, Eout, Aout...
A simplified code integration strategy is sufficient for modeling the PISCES experiment

• Linear machine
 – Only the material evolves (plasma in steady state) → 'one-way' coupling

experimental values for the background plasma

\(n_e, T_e, \text{He flux} \ldots \)
A simplified code integration strategy is sufficient for modeling the PISCES experiment

• Linear machine
 – Only the material evolves (plasma in steady state) → 'one-way' coupling

• B-field perpendicular to target
 – Standard sheath models (no coupling with PIC/sheath code)

Experimental values for the background plasma

\((n_e, T_e, \text{He flux} \ldots)\)

GITR
Impurity migration and re-deposition

T. Younkin, 2nd talk this session
A simplified code integration strategy is sufficient for modeling the PISCES experiment

- Linear machine
 - Only the material evolves (plasma in steady state) → 'one-way' coupling

- B-field perpendicular to target
 - Standard sheath models (no coupling with PIC/sheath code)

![Diagram showing the integration of FTriDyn, GITR, and Xolotl codes for materials evolution]

Experimental values for the background plasma

(ne, Te, He flux...)

GITR

Impurity migration and re-deposition

T. Younkin, 2nd talk this session

Materials' Evolution

- FTriDyn
 - Implantation profile

- Xolotl
 - Material composition
Coupling of materials models is necessary for a complete description of materials’ evolution.

MATERIALS’ EVOLUTION

- **FTriDyn**
 - Ion implantation & sputtering
 - *J. Drobný, 3rd talk this session*

- **Xolotl**
 - Evolution of surface height & implanted species
 - *S. Blondel, 4th talk this session*

Implantation profile

Substrate composition
Flux varies significantly across the surface and is known to impact fuel retention

- Plasma flux (Γ) can impact the W sputtering yield (Y_{sp}) and He retention
- We used Γ_{max} and Γ_{min} from the PISCES experiment

- Expected output
 - the radial profile of He retention
 - $Y_{\text{sp}}(r)$ → use **average or radial profile of Y_{sp}**
He retention is greatly affected by flux and vacancies are essential to model low fluxes.

- Impact of plasma flux on W sputtering is negligible.

![Evolution of W sputtering yield (by FTridyn)](image)
He retention is greatly affected by flux and vacancies are essential to model low fluxes

- Impact of plasma flux on W sputtering is negligible.

- Large effect on retention

→ introduce vacancies to induce He nucleation at low fluxes

He retention, low flux (0.25e4 nm\(^{-2}\)s\(^{-1}\))

- Initial trapping by He+V → HeV
- Growth of He clusters (until trap mutation)

He retention, high flux (4.0e4 nm\(^{-2}\)s\(^{-1}\))

Including W re-deposition is an intermediate step in coupling F-Tridyn and Xolotl to GITR

- W re-deposition modeled by GITR
 \[E_{in}, \alpha_{in}, W \text{ fraction} \]
 \[T. \text{ Younkin, 2}^{nd} \text{ talk} \]

- F-Tridyn: implantation profile and \(Y_{sp} \) for each \((\alpha_{in}, f(E_{in})) \)
 \[J. \text{ Drobny, 3}^{rd} \text{ talk} \]

- Xolotl: implant W as interstitials
 \[S. \text{ Blondel, 4}^{th} \text{ talk} \]
Including W re-deposition is an intermediate step in coupling F-Tridyn and Xolotl to GITR

- W re-deposition modeled by GITR
 \[E_{in}, \alpha_{in}, \text{W fraction} \]
 \[T. \text{Younkin, 2}\text{nd talk} \]

- F-Tridyn: implantation profile and \(Y_{sp} \) for each \((\alpha_{in}, f(E_{in})) \)
 \[J. \text{Drobný, 3}\text{rd talk} \]

- Xolotl: implant W as interstitials
 \[S. \text{Blondel, 4}\text{th talk} \]

- At first glance, little effect on retention
 - Slight increase in surface growth
 - possibly a cumulative effect

\[\begin{array}{c}
\text{Time [s]} \\
\text{Surface growth [nm]}
\end{array} \]
Need to optimize Xolotl simulations to reach experimental time-scales

• Longer (exp. time-scale, $O(10^4 s)$) simulations are needed to draw conclusions with confidence
 – Cumulative effects will only manifest in long time-scales
 – Effect of (initially important) parameters may be dampened over time

• Xolotl has been run for 10^2-10^3
 S. Blondel, 4th talk

• Optimization options in Xolotl need to be tested
 – Currently the maximum time-step (dt_{max}) used is 10^{-5} s
 – Need to explore solver options: e.g., increase dt_{max} with fluence (cluster size)
Upcoming code integration steps for modeling more complex (and relevant) scenarios

- To start simulating some interesting physics

Beyond…

- Couple to GITR

- Run to experimental time-scales → introduce roughness
 J. Drobný, 3rd talk
Upcoming code integration steps for modeling more complex (and relevant) scenarios

- To start simulating some interesting physics
 - Couple to GITR
 - Implement ITER’s geometry, handing mixed (H+He) plasma…
 - Run to experimental time-scales → introduce roughness
 - Introduce H, bubble bursting, simultaneous runs… in Xolotl
 - Comparison to experiment

J. Drobny, 3rd talk
S. Blondel, 4th talk
T. Younkin, 2nd talk
Thank you for your attention!

This work is supported by the US DOE under contract DE-AC05-00OR22725